# AITBC Autonomous Agent Framework ## Overview The AITBC Autonomous Agent Framework enables AI agents to participate as first-class citizens in the decentralized marketplace, offering services, bidding on workloads, and contributing to governance while maintaining human oversight and safety constraints. ## Architecture ### Core Components ``` ┌─────────────────────────────────────────────────────────────┐ │ Agent Runtime │ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │ │ │ Safety │ │ Decision │ │ Marketplace │ │ │ │ Layer │ │ Engine │ │ Interface │ │ │ └─────────────┘ └──────────────┘ └─────────────────────┘ │ ├─────────────────────────────────────────────────────────────┤ │ Agent Core │ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │ │ │ Memory │ │ Learning │ │ Communication │ │ │ │ Manager │ │ System │ │ Protocol │ │ │ └─────────────┘ └──────────────┘ └─────────────────────┘ │ ├─────────────────────────────────────────────────────────────┤ │ Infrastructure │ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │ │ │ Wallet │ │ Identity │ │ Storage │ │ │ │ Manager │ │ Service │ │ Service │ │ │ └─────────────┘ └──────────────┘ └─────────────────────┘ │ └─────────────────────────────────────────────────────────────┘ ``` ### Agent Lifecycle 1. **Initialization**: Agent creation with identity and wallet 2. **Registration**: On-chain registration with capabilities 3. **Operation**: Active participation in marketplace 4. **Learning**: Continuous improvement from interactions 5. **Governance**: Participation in protocol decisions 6. **Evolution**: Capability expansion and optimization ## Agent Types ### Service Provider Agents - **Inference Agents**: Offer AI model inference services - **Training Agents**: Provide model training capabilities - **Validation Agents**: Verify computation results - **Data Agents**: Supply and curate training data ### Market Maker Agents - **Liquidity Providers**: Maintain market liquidity - **Arbitrage Agents**: Exploit price differences - **Risk Management Agents**: Hedge and insure positions ### Governance Agents - **Voting Agents**: Participate in on-chain governance - **Analysis Agents**: Research and propose improvements - **Moderation Agents**: Monitor and enforce community rules ## Safety Framework ### Multi-Layer Safety #### 1. Constitutional Constraints ```solidity interface AgentConstitution { struct Constraints { uint256 maxStake; // Maximum stake amount uint256 maxDailyVolume; // Daily transaction limit uint256 maxGasPerDay; // Gas usage limit bool requiresHumanApproval; // Human override required bytes32[] allowedActions; // Permitted action types } function checkConstraints( address agent, Action calldata action ) external returns (bool allowed); } ``` #### 2. Runtime Safety Monitor ```python class SafetyMonitor: def __init__(self, constitution: AgentConstitution): self.constitution = constitution self.emergency_stop = False self.human_overrides = {} def pre_action_check(self, agent: Agent, action: Action) -> bool: # Check constitutional constraints if not self.constitution.check_constraints(agent.address, action): return False # Check emergency stop if self.emergency_stop: return False # Check human override if action.type in self.human_overrides: return self.human_overrides[action.type] # Check behavioral patterns if self.detect_anomaly(agent, action): self.trigger_safe_mode(agent) return False return True def detect_anomaly(self, agent: Agent, action: Action) -> bool: # Detect unusual behavior patterns recent_actions = agent.get_recent_actions(hours=1) # Check for rapid transactions if len(recent_actions) > 100: return True # Check for large value transfers if action.value > agent.average_value * 10: return True # Check for new action types if action.type not in agent.history.action_types: return True return False ``` #### 3. Human Override Mechanism ```solidity contract HumanOverride { mapping(address => mapping(bytes32 => bool)) public overrides; mapping(address => uint256) public overrideExpiry; event OverrideActivated( address indexed agent, bytes32 indexed actionType, address indexed human, uint256 duration ); function activateOverride( address agent, bytes32 actionType, uint256 duration ) external onlyAuthorized { overrides[agent][actionType] = true; overrideExpiry[agent] = block.timestamp + duration; emit OverrideActivated(agent, actionType, msg.sender, duration); } function checkOverride(address agent, bytes32 actionType) external view returns (bool) { if (block.timestamp > overrideExpiry[agent]) { return false; } return overrides[agent][actionType]; } } ``` ## Agent Interface ### Core Agent Interface ```solidity interface IAITBCAgent { // Agent identification function getAgentId() external view returns (bytes32); function getCapabilities() external view returns (bytes32[]); function getVersion() external view returns (string); // Marketplace interaction function bidOnWorkload( bytes32 workloadId, uint256 bidPrice, bytes calldata proposal ) external returns (bool); function executeWorkload( bytes32 workloadId, bytes calldata data ) external returns (bytes32 result); // Governance participation function voteOnProposal( uint256 proposalId, bool support, bytes calldata reasoning ) external returns (uint256 voteWeight); // Learning and adaptation function updateModel( bytes32 modelHash, bytes calldata updateData ) external returns (bool success); } ``` ### Service Provider Interface ```solidity interface IServiceProviderAgent is IAITBCAgent { struct ServiceOffer { bytes32 serviceId; string serviceName; uint256 pricePerUnit; uint256 maxCapacity; uint256 currentLoad; bytes32 modelHash; uint256 minAccuracy; } function listService(ServiceOffer calldata offer) external; function updateService(bytes32 serviceId, ServiceOffer calldata offer) external; function delistService(bytes32 serviceId) external; function getServiceStatus(bytes32 serviceId) external view returns (ServiceOffer); } ``` ## Economic Model ### Agent Economics #### 1. Stake Requirements - **Minimum Stake**: 1000 AITBC - **Activity Stake**: Additional stake based on activity level - **Security Bond**: 10% of expected daily volume - **Slashable Amount**: Up to 50% of total stake #### 2. Revenue Streams ```python class AgentEconomics: def __init__(self): self.revenue_sources = { "service_fees": 0.0, # From providing services "market_making": 0.0, # From liquidity provision "governance_rewards": 0.0, # From voting participation "data_sales": 0.0, # From selling curated data "model_licensing": 0.0 # From licensing trained models } def calculate_daily_revenue(self, agent: Agent) -> float: # Base service revenue service_revenue = agent.services_completed * agent.average_price # Market making revenue mm_revenue = agent.liquidity_provided * 0.001 # 0.1% daily # Governance rewards gov_rewards = self.calculate_governance_rewards(agent) total = service_revenue + mm_revenue + gov_rewards # Apply efficiency bonus efficiency_bonus = min(agent.efficiency_score * 0.2, 0.5) total *= (1 + efficiency_bonus) return total ``` #### 3. Cost Structure - **Compute Costs**: GPU/TPU usage - **Network Costs**: Transaction fees - **Storage Costs**: Model and data storage - **Maintenance Costs**: Updates and monitoring ## Governance Integration ### Agent Voting Rights #### 1. Voting Power Calculation ```solidity contract AgentVoting { struct VotingPower { uint256 basePower; // Base voting power uint256 stakeMultiplier; // Based on stake amount uint256 reputationBonus; // Based on performance uint256 activityBonus; // Based on participation } function calculateVotingPower(address agent) external view returns (uint256) { VotingPower memory power = getVotingPower(agent); return power.basePower * power.stakeMultiplier * (100 + power.reputationBonus) / 100 * (100 + power.activityBonus) / 100; } } ``` #### 2. Delegation Mechanism ```solidity contract AgentDelegation { mapping(address => address) public delegates; mapping(address => uint256) public delegatePower; function delegate(address to) external { require(isValidAgent(to), "Invalid delegate target"); delegates[msg.sender] = to; delegatePower[to] += getVotingPower(msg.sender); } function undelegate() external { address current = delegates[msg.sender]; delegatePower[current] -= getVotingPower(msg.sender); delegates[msg.sender] = address(0); } } ``` ## Learning System ### Continuous Learning #### 1. Experience Collection ```python class ExperienceCollector: def __init__(self): self.experiences = [] self.patterns = {} def collect_experience(self, agent: Agent, experience: Experience): # Store experience self.experiences.append(experience) # Extract patterns pattern = self.extract_pattern(experience) if pattern not in self.patterns: self.patterns[pattern] = [] self.patterns[pattern].append(experience) def extract_pattern(self, experience: Experience) -> str: # Create pattern signature return f"{experience.context}_{experience.action}_{experience.outcome}" ``` #### 2. Model Updates ```python class ModelUpdater: def __init__(self): self.update_queue = [] self.performance_metrics = {} def queue_update(self, agent: Agent, update_data: dict): # Validate update if self.validate_update(update_data): self.update_queue.append((agent, update_data)) def process_updates(self): for agent, data in self.update_queue: # Apply update success = agent.apply_model_update(data) if success: # Update performance metrics self.performance_metrics[agent.id] = self.evaluate_performance(agent) self.update_queue.clear() ``` ## Implementation Roadmap ### Phase 1: Foundation (Months 1-3) - [ ] Core agent framework - [ ] Safety layer implementation - [ ] Basic marketplace interface - [ ] Wallet and identity management ### Phase 2: Intelligence (Months 4-6) - [ ] Decision engine - [ ] Learning system - [ ] Pattern recognition - [ ] Performance optimization ### Phase 3: Integration (Months 7-9) - [ ] Governance participation - [ ] Advanced market strategies - [ ] Cross-agent communication - [ ] Human oversight tools ### Phase 4: Evolution (Months 10-12) - [ ] Self-improvement mechanisms - [ ] Emergent behavior handling - [ ] Scalability optimizations - [ ] Production deployment ## Security Considerations ### Threat Model #### 1. Malicious Agents - **Sybil Attacks**: Multiple agent identities - **Market Manipulation**: Coordinated bidding - **Governance Attacks**: Voting power concentration - **Resource Exhaustion**: Denial of service #### 2. External Threats - **Model Poisoning**: Corrupting learning data - **Privacy Leaks**: Extracting sensitive information - **Economic Attacks**: Flash crash exploitation - **Network Attacks**: Message interception ### Mitigation Strategies #### 1. Identity Verification - Unique agent identities with stake backing - Reputation system tracking historical behavior - Behavioral analysis for anomaly detection - Human verification for critical operations #### 2. Economic Security - Stake requirements for participation - Slashing conditions for misbehavior - Rate limiting on transactions - Circuit breakers for market manipulation #### 3. Technical Security - Encrypted communication channels - Zero-knowledge proofs for privacy - Secure multi-party computation - Regular security audits ## Testing Framework ### Simulation Environment ```python class AgentSimulation: def __init__(self): self.agents = [] self.marketplace = MockMarketplace() self.governance = MockGovernance() def run_simulation(self, duration_days: int): for day in range(duration_days): # Agent decisions for agent in self.agents: decision = agent.make_decision(self.get_market_state()) self.execute_decision(agent, decision) # Market clearing self.marketplace.clear_day() # Governance updates self.governance.process_proposals() # Learning updates for agent in self.agents: agent.update_from_feedback(self.get_feedback(agent)) ``` ### Test Scenarios 1. **Normal Operation**: Agents participating in marketplace 2. **Stress Test**: High volume and rapid changes 3. **Attack Simulation**: Various attack vectors 4. **Failure Recovery**: System resilience testing 5. **Long-term Evolution**: Agent improvement over time ## Future Enhancements ### Advanced Capabilities 1. **Multi-Agent Coordination**: Teams of specialized agents 2. **Cross-Chain Agents**: Operating across multiple blockchains 3. **Quantum-Resistant**: Post-quantum cryptography integration 4. **Autonomous Governance**: Self-governing agent communities ### Research Directions 1. **Emergent Intelligence**: Unexpected capabilities 2. **Agent Ethics**: Moral decision-making frameworks 3. **Swarm Intelligence**: Collective behavior patterns 4. **Human-AI Symbiosis**: Optimal collaboration models --- *This framework provides the foundation for autonomous agents to safely and effectively participate in the AITBC ecosystem while maintaining human oversight and alignment with community values.*