Files
aitbc/apps/blockchain-node/scripts/test_autoscaling.py
oib c8be9d7414 feat: add marketplace metrics, privacy features, and service registry endpoints
- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels
- Implement confidential transaction models with encryption support and access control
- Add key management system with registration, rotation, and audit logging
- Create services and registry routers for service discovery and management
- Integrate ZK proof generation for privacy-preserving receipts
- Add metrics instru
2025-12-22 10:33:23 +01:00

280 lines
11 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Autoscaling Validation Script
This script generates synthetic traffic to test and validate HPA behavior.
It monitors pod counts and metrics while generating load to ensure autoscaling works as expected.
Usage:
python test_autoscaling.py --service coordinator --namespace default --target-url http://localhost:8011 --duration 300
"""
import asyncio
import aiohttp
import time
import argparse
import logging
import json
from typing import List, Dict, Any
from datetime import datetime
import subprocess
import sys
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class AutoscalingTest:
"""Test suite for validating autoscaling behavior"""
def __init__(self, service_name: str, namespace: str, target_url: str):
self.service_name = service_name
self.namespace = namespace
self.target_url = target_url
self.session = None
async def __aenter__(self):
self.session = aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=30))
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
if self.session:
await self.session.close()
async def get_pod_count(self) -> int:
"""Get current number of pods for the service"""
cmd = [
"kubectl", "get", "pods",
"-n", self.namespace,
"-l", f"app.kubernetes.io/name={self.service_name}",
"-o", "jsonpath='{.items[*].status.phase}'"
]
try:
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
# Count Running pods
phases = result.stdout.strip().strip("'").split()
return len([p for p in phases if p == "Running"])
except subprocess.CalledProcessError as e:
logger.error(f"Failed to get pod count: {e}")
return 0
async def get_hpa_status(self) -> Dict[str, Any]:
"""Get current HPA status"""
cmd = [
"kubectl", "get", "hpa",
"-n", self.namespace,
f"{self.service_name}",
"-o", "json"
]
try:
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
data = json.loads(result.stdout)
return {
"min_replicas": data["spec"]["minReplicas"],
"max_replicas": data["spec"]["maxReplicas"],
"current_replicas": data["status"]["currentReplicas"],
"desired_replicas": data["status"]["desiredReplicas"],
"current_cpu": data["status"].get("currentCPUUtilizationPercentage"),
"target_cpu": None
}
# Extract target CPU from metrics
for metric in data["spec"]["metrics"]:
if metric["type"] == "Resource" and metric["resource"]["name"] == "cpu":
self.target_cpu = metric["resource"]["target"]["averageUtilization"]
break
except subprocess.CalledProcessError as e:
logger.error(f"Failed to get HPA status: {e}")
return {}
async def generate_load(self, duration: int, concurrent_requests: int = 50):
"""Generate sustained load on the service"""
logger.info(f"Generating load for {duration}s with {concurrent_requests} concurrent requests")
async def make_request():
try:
if self.service_name == "coordinator":
# Test marketplace endpoints
endpoints = [
"/v1/marketplace/offers",
"/v1/marketplace/stats"
]
endpoint = endpoints[hash(time.time()) % len(endpoints)]
async with self.session.get(f"{self.target_url}{endpoint}") as response:
return response.status == 200
elif self.service_name == "blockchain-node":
# Test blockchain endpoints
payload = {
"from": "0xtest_sender",
"to": "0xtest_receiver",
"value": "1000",
"nonce": int(time.time()),
"data": "0x",
"gas_limit": 21000,
"gas_price": "1000000000"
}
async with self.session.post(f"{self.target_url}/v1/transactions", json=payload) as response:
return response.status == 200
else:
# Generic health check
async with self.session.get(f"{self.target_url}/v1/health") as response:
return response.status == 200
except Exception as e:
logger.debug(f"Request failed: {e}")
return False
# Generate sustained load
start_time = time.time()
tasks = []
while time.time() - start_time < duration:
# Create batch of concurrent requests
batch = [make_request() for _ in range(concurrent_requests)]
tasks.extend(batch)
# Wait for batch to complete
await asyncio.gather(*batch, return_exceptions=True)
# Brief pause between batches
await asyncio.sleep(0.1)
logger.info(f"Load generation completed")
async def monitor_scaling(self, duration: int, interval: int = 10):
"""Monitor pod scaling during load test"""
logger.info(f"Monitoring scaling for {duration}s")
results = []
start_time = time.time()
while time.time() - start_time < duration:
timestamp = datetime.now().isoformat()
pod_count = await self.get_pod_count()
hpa_status = await self.get_hpa_status()
result = {
"timestamp": timestamp,
"pod_count": pod_count,
"hpa_status": hpa_status
}
results.append(result)
logger.info(f"[{timestamp}] Pods: {pod_count}, HPA: {hpa_status}")
await asyncio.sleep(interval)
return results
async def run_test(self, load_duration: int = 300, monitor_duration: int = 400):
"""Run complete autoscaling test"""
logger.info(f"Starting autoscaling test for {self.service_name}")
# Record initial state
initial_pods = await self.get_pod_count()
initial_hpa = await self.get_hpa_status()
logger.info(f"Initial state - Pods: {initial_pods}, HPA: {initial_hpa}")
# Start monitoring in background
monitor_task = asyncio.create_task(
self.monitor_scaling(monitor_duration)
)
# Wait a bit to establish baseline
await asyncio.sleep(30)
# Generate load
await self.generate_load(load_duration)
# Wait for scaling to stabilize
await asyncio.sleep(60)
# Get monitoring results
monitoring_results = await monitor_task
# Analyze results
max_pods = max(r["pod_count"] for r in monitoring_results)
min_pods = min(r["pod_count"] for r in monitoring_results)
scaled_up = max_pods > initial_pods
logger.info("\n=== Test Results ===")
logger.info(f"Initial pods: {initial_pods}")
logger.info(f"Min pods during test: {min_pods}")
logger.info(f"Max pods during test: {max_pods}")
logger.info(f"Scaling occurred: {scaled_up}")
if scaled_up:
logger.info("✅ Autoscaling test PASSED - Service scaled up under load")
else:
logger.warning("⚠️ Autoscaling test FAILED - Service did not scale up")
logger.warning("Check:")
logger.warning(" - HPA configuration")
logger.warning(" - Metrics server is running")
logger.warning(" - Resource requests/limits are set")
logger.warning(" - Load was sufficient to trigger scaling")
# Save results
results_file = f"autoscaling_test_{self.service_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
with open(results_file, "w") as f:
json.dump({
"service": self.service_name,
"namespace": self.namespace,
"initial_pods": initial_pods,
"max_pods": max_pods,
"min_pods": min_pods,
"scaled_up": scaled_up,
"monitoring_data": monitoring_results
}, f, indent=2)
logger.info(f"Detailed results saved to: {results_file}")
return scaled_up
async def main():
parser = argparse.ArgumentParser(description="Autoscaling Validation Test")
parser.add_argument("--service", required=True,
choices=["coordinator", "blockchain-node", "wallet-daemon"],
help="Service to test")
parser.add_argument("--namespace", default="default",
help="Kubernetes namespace")
parser.add_argument("--target-url", required=True,
help="Service URL to generate load against")
parser.add_argument("--load-duration", type=int, default=300,
help="Duration of load generation in seconds")
parser.add_argument("--monitor-duration", type=int, default=400,
help="Total monitoring duration in seconds")
parser.add_argument("--local-mode", action="store_true",
help="Run in local mode without Kubernetes (load test only)")
args = parser.parse_args()
if not args.local_mode:
# Verify kubectl is available
try:
subprocess.run(["kubectl", "version"], capture_output=True, check=True)
except (subprocess.CalledProcessError, FileNotFoundError):
logger.error("kubectl is not available or not configured")
logger.info("Use --local-mode to run load test without Kubernetes monitoring")
sys.exit(1)
# Run test
async with AutoscalingTest(args.service, args.namespace, args.target_url) as test:
if args.local_mode:
# Local mode: just test load generation
logger.info(f"Running load test for {args.service} in local mode")
await test.generate_load(args.load_duration)
logger.info("Load test completed successfully")
success = True
else:
# Full autoscaling test
success = await test.run_test(args.load_duration, args.monitor_duration)
sys.exit(0 if success else 1)
if __name__ == "__main__":
asyncio.run(main())