Files
aitbc/infra/scripts/chaos_test_database.py
oib c8be9d7414 feat: add marketplace metrics, privacy features, and service registry endpoints
- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels
- Implement confidential transaction models with encryption support and access control
- Add key management system with registration, rotation, and audit logging
- Create services and registry routers for service discovery and management
- Integrate ZK proof generation for privacy-preserving receipts
- Add metrics instru
2025-12-22 10:33:23 +01:00

388 lines
15 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Chaos Testing Script - Database Failure
Tests system resilience when PostgreSQL database becomes unavailable
"""
import asyncio
import aiohttp
import argparse
import json
import time
import logging
import subprocess
import sys
from datetime import datetime
from typing import Dict, List, Optional
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class ChaosTestDatabase:
"""Chaos testing for database failure scenarios"""
def __init__(self, namespace: str = "default"):
self.namespace = namespace
self.session = None
self.metrics = {
"test_start": None,
"test_end": None,
"failure_start": None,
"failure_end": None,
"recovery_time": None,
"mttr": None,
"error_count": 0,
"success_count": 0,
"scenario": "database_failure",
"failure_type": None
}
async def __aenter__(self):
self.session = aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=10))
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
if self.session:
await self.session.close()
def get_postgresql_pod(self) -> Optional[str]:
"""Get PostgreSQL pod name"""
cmd = [
"kubectl", "get", "pods",
"-n", self.namespace,
"-l", "app.kubernetes.io/name=postgresql",
"-o", "jsonpath={.items[0].metadata.name}"
]
try:
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
pod = result.stdout.strip()
return pod if pod else None
except subprocess.CalledProcessError as e:
logger.error(f"Failed to get PostgreSQL pod: {e}")
return None
def simulate_database_connection_failure(self) -> bool:
"""Simulate database connection failure by blocking port 5432"""
pod = self.get_postgresql_pod()
if not pod:
return False
try:
# Block incoming connections to PostgreSQL
cmd = [
"kubectl", "exec", "-n", self.namespace, pod, "--",
"iptables", "-A", "INPUT", "-p", "tcp", "--dport", "5432", "-j", "DROP"
]
subprocess.run(cmd, check=True)
# Block outgoing connections from PostgreSQL
cmd = [
"kubectl", "exec", "-n", self.namespace, pod, "--",
"iptables", "-A", "OUTPUT", "-p", "tcp", "--sport", "5432", "-j", "DROP"
]
subprocess.run(cmd, check=True)
logger.info(f"Blocked PostgreSQL connections on pod {pod}")
self.metrics["failure_type"] = "connection_blocked"
return True
except subprocess.CalledProcessError as e:
logger.error(f"Failed to block PostgreSQL connections: {e}")
return False
def simulate_database_high_latency(self, latency_ms: int = 5000) -> bool:
"""Simulate high database latency using netem"""
pod = self.get_postgresql_pod()
if not pod:
return False
try:
# Add latency to PostgreSQL traffic
cmd = [
"kubectl", "exec", "-n", self.namespace, pod, "--",
"tc", "qdisc", "add", "dev", "eth0", "root", "netem", "delay", f"{latency_ms}ms"
]
subprocess.run(cmd, check=True)
logger.info(f"Added {latency_ms}ms latency to PostgreSQL on pod {pod}")
self.metrics["failure_type"] = "high_latency"
return True
except subprocess.CalledProcessError as e:
logger.error(f"Failed to add latency to PostgreSQL: {e}")
return False
def restore_database(self) -> bool:
"""Restore database connections"""
pod = self.get_postgresql_pod()
if not pod:
return False
try:
# Remove iptables rules
cmd = [
"kubectl", "exec", "-n", self.namespace, pod, "--",
"iptables", "-F", "INPUT"
]
subprocess.run(cmd, check=False) # May fail if rules don't exist
cmd = [
"kubectl", "exec", "-n", self.namespace, pod, "--",
"iptables", "-F", "OUTPUT"
]
subprocess.run(cmd, check=False)
# Remove netem qdisc
cmd = [
"kubectl", "exec", "-n", self.namespace, pod, "--",
"tc", "qdisc", "del", "dev", "eth0", "root"
]
subprocess.run(cmd, check=False)
logger.info(f"Restored PostgreSQL connections on pod {pod}")
return True
except subprocess.CalledProcessError as e:
logger.error(f"Failed to restore PostgreSQL: {e}")
return False
async def test_database_connectivity(self) -> bool:
"""Test if coordinator can connect to database"""
try:
# Get coordinator pod
cmd = [
"kubectl", "get", "pods",
"-n", self.namespace,
"-l", "app.kubernetes.io/name=coordinator",
"-o", "jsonpath={.items[0].metadata.name}"
]
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
coordinator_pod = result.stdout.strip()
if not coordinator_pod:
return False
# Test database connection from coordinator
cmd = [
"kubectl", "exec", "-n", self.namespace, coordinator_pod, "--",
"python", "-c", "import psycopg2; psycopg2.connect('postgresql://aitbc:password@postgresql:5432/aitbc'); print('OK')"
]
result = subprocess.run(cmd, capture_output=True, text=True)
return result.returncode == 0 and "OK" in result.stdout
except Exception:
return False
async def test_api_health(self) -> bool:
"""Test if coordinator API is healthy"""
try:
# Get service URL
cmd = [
"kubectl", "get", "svc", "coordinator",
"-n", self.namespace,
"-o", "jsonpath={.spec.clusterIP}:{.spec.ports[0].port}"
]
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
service_url = f"http://{result.stdout.strip()}/v1/health"
# Test health endpoint
response = subprocess.run(
["curl", "-s", "--max-time", "5", service_url],
capture_output=True, text=True
)
return response.returncode == 0 and "ok" in response.stdout
except Exception:
return False
async def generate_load(self, duration: int, concurrent: int = 10):
"""Generate synthetic load on coordinator API"""
logger.info(f"Generating load for {duration} seconds with {concurrent} concurrent requests")
# Get service URL
cmd = [
"kubectl", "get", "svc", "coordinator",
"-n", self.namespace,
"-o", "jsonpath={.spec.clusterIP}:{.spec.ports[0].port}"
]
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
base_url = f"http://{result.stdout.strip()}"
start_time = time.time()
tasks = []
async def make_request():
try:
async with self.session.get(f"{base_url}/v1/marketplace/offers") as response:
if response.status == 200:
self.metrics["success_count"] += 1
else:
self.metrics["error_count"] += 1
except Exception:
self.metrics["error_count"] += 1
while time.time() - start_time < duration:
# Create batch of requests
batch = [make_request() for _ in range(concurrent)]
tasks.extend(batch)
# Wait for batch to complete
await asyncio.gather(*batch, return_exceptions=True)
# Brief pause
await asyncio.sleep(1)
logger.info(f"Load generation completed. Success: {self.metrics['success_count']}, Errors: {self.metrics['error_count']}")
async def wait_for_recovery(self, timeout: int = 300) -> bool:
"""Wait for database and API to recover"""
start_time = time.time()
while time.time() - start_time < timeout:
# Test database connectivity
db_connected = await self.test_database_connectivity()
# Test API health
api_healthy = await self.test_api_health()
if db_connected and api_healthy:
recovery_time = time.time() - start_time
self.metrics["recovery_time"] = recovery_time
logger.info(f"Database and API recovered in {recovery_time:.2f} seconds")
return True
await asyncio.sleep(5)
logger.error("Database and API did not recover within timeout")
return False
async def run_test(self, failure_type: str = "connection", failure_duration: int = 60):
"""Run the complete database chaos test"""
logger.info(f"Starting database chaos test - failure type: {failure_type}")
self.metrics["test_start"] = datetime.utcnow().isoformat()
# Phase 1: Baseline test
logger.info("Phase 1: Baseline connectivity test")
db_connected = await self.test_database_connectivity()
api_healthy = await self.test_api_health()
if not db_connected or not api_healthy:
logger.error("Baseline test failed - database or API not healthy")
return False
logger.info("Baseline: Database and API are healthy")
# Phase 2: Generate initial load
logger.info("Phase 2: Generating initial load")
await self.generate_load(30)
# Phase 3: Induce database failure
logger.info("Phase 3: Inducing database failure")
self.metrics["failure_start"] = datetime.utcnow().isoformat()
if failure_type == "connection":
if not self.simulate_database_connection_failure():
logger.error("Failed to induce database connection failure")
return False
elif failure_type == "latency":
if not self.simulate_database_high_latency():
logger.error("Failed to induce database latency")
return False
else:
logger.error(f"Unknown failure type: {failure_type}")
return False
# Verify failure is effective
await asyncio.sleep(5)
db_connected = await self.test_database_connectivity()
api_healthy = await self.test_api_health()
logger.info(f"During failure - DB connected: {db_connected}, API healthy: {api_healthy}")
# Phase 4: Monitor during failure
logger.info(f"Phase 4: Monitoring system during {failure_duration}s failure")
# Generate load during failure
await self.generate_load(failure_duration)
# Phase 5: Restore database and monitor recovery
logger.info("Phase 5: Restoring database")
self.metrics["failure_end"] = datetime.utcnow().isoformat()
if not self.restore_database():
logger.error("Failed to restore database")
return False
# Wait for recovery
if not await self.wait_for_recovery():
logger.error("System did not recover after database restoration")
return False
# Phase 6: Post-recovery load test
logger.info("Phase 6: Post-recovery load test")
await self.generate_load(60)
# Final metrics
self.metrics["test_end"] = datetime.utcnow().isoformat()
self.metrics["mttr"] = self.metrics["recovery_time"]
# Save results
self.save_results()
logger.info("Database chaos test completed successfully")
return True
def save_results(self):
"""Save test results to file"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chaos_test_database_{timestamp}.json"
with open(filename, "w") as f:
json.dump(self.metrics, f, indent=2)
logger.info(f"Test results saved to: {filename}")
# Print summary
print("\n=== Chaos Test Summary ===")
print(f"Scenario: {self.metrics['scenario']}")
print(f"Failure Type: {self.metrics['failure_type']}")
print(f"Test Duration: {self.metrics['test_start']} to {self.metrics['test_end']}")
print(f"Failure Duration: {self.metrics['failure_start']} to {self.metrics['failure_end']}")
print(f"MTTR: {self.metrics['mttr']:.2f} seconds" if self.metrics['mttr'] else "MTTR: N/A")
print(f"Success Requests: {self.metrics['success_count']}")
print(f"Error Requests: {self.metrics['error_count']}")
async def main():
parser = argparse.ArgumentParser(description="Chaos test for database failure")
parser.add_argument("--namespace", default="default", help="Kubernetes namespace")
parser.add_argument("--failure-type", choices=["connection", "latency"], default="connection", help="Type of failure to simulate")
parser.add_argument("--failure-duration", type=int, default=60, help="Failure duration in seconds")
parser.add_argument("--dry-run", action="store_true", help="Dry run without actual chaos")
args = parser.parse_args()
if args.dry_run:
logger.info(f"DRY RUN: Would simulate {args.failure_type} database failure for {args.failure_duration} seconds")
return
# Verify kubectl is available
try:
subprocess.run(["kubectl", "version"], capture_output=True, check=True)
except (subprocess.CalledProcessError, FileNotFoundError):
logger.error("kubectl is not available or not configured")
sys.exit(1)
# Run test
async with ChaosTestDatabase(args.namespace) as test:
success = await test.run_test(args.failure_type, args.failure_duration)
sys.exit(0 if success else 1)
if __name__ == "__main__":
asyncio.run(main())