Files
oib c8be9d7414 feat: add marketplace metrics, privacy features, and service registry endpoints
- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels
- Implement confidential transaction models with encryption support and access control
- Add key management system with registration, rotation, and audit logging
- Create services and registry routers for service discovery and management
- Integrate ZK proof generation for privacy-preserving receipts
- Add metrics instru
2025-12-22 10:33:23 +01:00

216 lines
7.2 KiB
Python

"""
Whisper speech recognition plugin
"""
import asyncio
import os
import tempfile
from typing import Dict, Any, List
import time
from .base import GPUPlugin, PluginResult
from .exceptions import PluginExecutionError
class WhisperPlugin(GPUPlugin):
"""Plugin for Whisper speech recognition"""
def __init__(self):
super().__init__()
self.service_id = "whisper"
self.name = "Whisper Speech Recognition"
self.version = "1.0.0"
self.description = "Transcribe and translate audio files using OpenAI Whisper"
self.capabilities = ["transcribe", "translate"]
self._model_cache = {}
def setup(self) -> None:
"""Initialize Whisper dependencies"""
super().setup()
# Check for whisper installation
try:
import whisper
self.whisper = whisper
except ImportError:
raise PluginExecutionError("Whisper not installed. Install with: pip install openai-whisper")
# Check for ffmpeg
import subprocess
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
except (subprocess.CalledProcessError, FileNotFoundError):
raise PluginExecutionError("FFmpeg not found. Install FFmpeg for audio processing")
def validate_request(self, request: Dict[str, Any]) -> List[str]:
"""Validate Whisper request parameters"""
errors = []
# Check required parameters
if "audio_url" not in request and "audio_file" not in request:
errors.append("Either 'audio_url' or 'audio_file' must be provided")
# Validate model
model = request.get("model", "base")
valid_models = ["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"]
if model not in valid_models:
errors.append(f"Invalid model. Must be one of: {', '.join(valid_models)}")
# Validate task
task = request.get("task", "transcribe")
if task not in ["transcribe", "translate"]:
errors.append("Task must be 'transcribe' or 'translate'")
# Validate language
if "language" in request:
language = request["language"]
if not isinstance(language, str) or len(language) != 2:
errors.append("Language must be a 2-letter language code (e.g., 'en', 'es')")
return errors
def get_hardware_requirements(self) -> Dict[str, Any]:
"""Get hardware requirements for Whisper"""
return {
"gpu": "recommended",
"vram_gb": 2,
"ram_gb": 4,
"storage_gb": 1
}
async def execute(self, request: Dict[str, Any]) -> PluginResult:
"""Execute Whisper transcription"""
start_time = time.time()
try:
# Validate request
errors = self.validate_request(request)
if errors:
return PluginResult(
success=False,
error=f"Validation failed: {'; '.join(errors)}"
)
# Get parameters
model_name = request.get("model", "base")
task = request.get("task", "transcribe")
language = request.get("language")
temperature = request.get("temperature", 0.0)
# Load or get cached model
model = await self._load_model(model_name)
# Get audio file
audio_path = await self._get_audio_file(request)
# Transcribe
loop = asyncio.get_event_loop()
if task == "translate":
result = await loop.run_in_executor(
None,
lambda: model.transcribe(
audio_path,
task="translate",
temperature=temperature
)
)
else:
result = await loop.run_in_executor(
None,
lambda: model.transcribe(
audio_path,
language=language,
temperature=temperature
)
)
# Clean up
if audio_path != request.get("audio_file"):
os.unlink(audio_path)
execution_time = time.time() - start_time
return PluginResult(
success=True,
data={
"text": result["text"],
"language": result.get("language"),
"segments": result.get("segments", [])
},
metrics={
"model": model_name,
"task": task,
"audio_duration": result.get("duration"),
"processing_time": execution_time,
"real_time_factor": result.get("duration", 0) / execution_time if execution_time > 0 else 0
},
execution_time=execution_time
)
except Exception as e:
return PluginResult(
success=False,
error=str(e),
execution_time=time.time() - start_time
)
async def _load_model(self, model_name: str):
"""Load Whisper model with caching"""
if model_name not in self._model_cache:
loop = asyncio.get_event_loop()
model = await loop.run_in_executor(
None,
lambda: self.whisper.load_model(model_name)
)
self._model_cache[model_name] = model
return self._model_cache[model_name]
async def _get_audio_file(self, request: Dict[str, Any]) -> str:
"""Get audio file from URL or direct file path"""
if "audio_file" in request:
return request["audio_file"]
# Download from URL
audio_url = request["audio_url"]
# Use requests to download
import requests
response = requests.get(audio_url, stream=True)
response.raise_for_status()
# Save to temporary file
suffix = self._get_audio_suffix(audio_url)
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f.name
def _get_audio_suffix(self, url: str) -> str:
"""Get file extension from URL"""
if url.endswith('.mp3'):
return '.mp3'
elif url.endswith('.wav'):
return '.wav'
elif url.endswith('.m4a'):
return '.m4a'
elif url.endswith('.flac'):
return '.flac'
else:
return '.mp3' # Default
async def health_check(self) -> bool:
"""Check Whisper health"""
try:
# Check if we can load the tiny model
await self._load_model("tiny")
return True
except Exception:
return False
def cleanup(self) -> None:
"""Cleanup resources"""
self._model_cache.clear()