Update 2025-04-13_15:16:39

This commit is contained in:
2025-04-13 15:16:39 +02:00
commit 0a1a209dac
12 changed files with 986 additions and 0 deletions

68
Fine-Tune_LoRA_GPU.py Normal file
View File

@ -0,0 +1,68 @@
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model
from datasets import Dataset
import torch
import os
# Load model and tokenizer from HF
model_name = "Qwen/Qwen2.5-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") # GPU
# Prepare dataset: each .txt file as one example
content_dir = "./content"
texts = []
for txt_file in os.listdir(content_dir):
if txt_file.endswith(".txt"):
with open(os.path.join(content_dir, txt_file), "r", encoding="utf-8") as tf:
# Join all lines in the file into one text
text = " ".join(line.strip() for line in tf.readlines() if line.strip())
texts.append(text)
dataset = Dataset.from_dict({"text": texts})
print(f"Dataset size: {len(dataset)}") # Should be ~300
def tokenize_function(examples):
# Tokenize the text
tokenized = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
# Create labels for causal LM
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
# Configure LoRA
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.1,
)
model = get_peft_model(model, lora_config)
# Training arguments
training_args = TrainingArguments(
output_dir="./fine_tuned_qwen2_5_1_5b",
per_device_train_batch_size=8,
gradient_accumulation_steps=1,
num_train_epochs=5,
learning_rate=2e-4,
save_steps=50,
logging_steps=10,
fp16=True,
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
# Fine-tune
trainer.train()
# Save
model.save_pretrained("./fine_tuned_qwen2_5_1_5b")
tokenizer.save_pretrained("./fine_tuned_qwen2_5_1_5b")