Update 2025-04-24_11:44:19
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,256 @@
|
||||
"""Old `@validator` and `@root_validator` function validators from V1."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
from functools import partial, partialmethod
|
||||
from types import FunctionType
|
||||
from typing import TYPE_CHECKING, Any, Callable, Literal, TypeVar, Union, overload
|
||||
from warnings import warn
|
||||
|
||||
from typing_extensions import Protocol, TypeAlias, deprecated
|
||||
|
||||
from .._internal import _decorators, _decorators_v1
|
||||
from ..errors import PydanticUserError
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
_ALLOW_REUSE_WARNING_MESSAGE = '`allow_reuse` is deprecated and will be ignored; it should no longer be necessary'
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
||||
class _OnlyValueValidatorClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, __value: Any) -> Any: ...
|
||||
|
||||
class _V1ValidatorWithValuesClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, __value: Any, values: dict[str, Any]) -> Any: ...
|
||||
|
||||
class _V1ValidatorWithValuesKwOnlyClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, __value: Any, *, values: dict[str, Any]) -> Any: ...
|
||||
|
||||
class _V1ValidatorWithKwargsClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, **kwargs: Any) -> Any: ...
|
||||
|
||||
class _V1ValidatorWithValuesAndKwargsClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, values: dict[str, Any], **kwargs: Any) -> Any: ...
|
||||
|
||||
class _V1RootValidatorClsMethod(Protocol):
|
||||
def __call__(
|
||||
self, __cls: Any, __values: _decorators_v1.RootValidatorValues
|
||||
) -> _decorators_v1.RootValidatorValues: ...
|
||||
|
||||
V1Validator = Union[
|
||||
_OnlyValueValidatorClsMethod,
|
||||
_V1ValidatorWithValuesClsMethod,
|
||||
_V1ValidatorWithValuesKwOnlyClsMethod,
|
||||
_V1ValidatorWithKwargsClsMethod,
|
||||
_V1ValidatorWithValuesAndKwargsClsMethod,
|
||||
_decorators_v1.V1ValidatorWithValues,
|
||||
_decorators_v1.V1ValidatorWithValuesKwOnly,
|
||||
_decorators_v1.V1ValidatorWithKwargs,
|
||||
_decorators_v1.V1ValidatorWithValuesAndKwargs,
|
||||
]
|
||||
|
||||
V1RootValidator = Union[
|
||||
_V1RootValidatorClsMethod,
|
||||
_decorators_v1.V1RootValidatorFunction,
|
||||
]
|
||||
|
||||
_PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]]
|
||||
|
||||
# Allow both a V1 (assumed pre=False) or V2 (assumed mode='after') validator
|
||||
# We lie to type checkers and say we return the same thing we get
|
||||
# but in reality we return a proxy object that _mostly_ behaves like the wrapped thing
|
||||
_V1ValidatorType = TypeVar('_V1ValidatorType', V1Validator, _PartialClsOrStaticMethod)
|
||||
_V1RootValidatorFunctionType = TypeVar(
|
||||
'_V1RootValidatorFunctionType',
|
||||
_decorators_v1.V1RootValidatorFunction,
|
||||
_V1RootValidatorClsMethod,
|
||||
_PartialClsOrStaticMethod,
|
||||
)
|
||||
else:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
|
||||
@deprecated(
|
||||
'Pydantic V1 style `@validator` validators are deprecated.'
|
||||
' You should migrate to Pydantic V2 style `@field_validator` validators,'
|
||||
' see the migration guide for more details',
|
||||
category=None,
|
||||
)
|
||||
def validator(
|
||||
__field: str,
|
||||
*fields: str,
|
||||
pre: bool = False,
|
||||
each_item: bool = False,
|
||||
always: bool = False,
|
||||
check_fields: bool | None = None,
|
||||
allow_reuse: bool = False,
|
||||
) -> Callable[[_V1ValidatorType], _V1ValidatorType]:
|
||||
"""Decorate methods on the class indicating that they should be used to validate fields.
|
||||
|
||||
Args:
|
||||
__field (str): The first field the validator should be called on; this is separate
|
||||
from `fields` to ensure an error is raised if you don't pass at least one.
|
||||
*fields (str): Additional field(s) the validator should be called on.
|
||||
pre (bool, optional): Whether this validator should be called before the standard
|
||||
validators (else after). Defaults to False.
|
||||
each_item (bool, optional): For complex objects (sets, lists etc.) whether to validate
|
||||
individual elements rather than the whole object. Defaults to False.
|
||||
always (bool, optional): Whether this method and other validators should be called even if
|
||||
the value is missing. Defaults to False.
|
||||
check_fields (bool | None, optional): Whether to check that the fields actually exist on the model.
|
||||
Defaults to None.
|
||||
allow_reuse (bool, optional): Whether to track and raise an error if another validator refers to
|
||||
the decorated function. Defaults to False.
|
||||
|
||||
Returns:
|
||||
Callable: A decorator that can be used to decorate a
|
||||
function to be used as a validator.
|
||||
"""
|
||||
warn(
|
||||
'Pydantic V1 style `@validator` validators are deprecated.'
|
||||
' You should migrate to Pydantic V2 style `@field_validator` validators,'
|
||||
' see the migration guide for more details',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
if allow_reuse is True: # pragma: no cover
|
||||
warn(_ALLOW_REUSE_WARNING_MESSAGE, DeprecationWarning)
|
||||
fields = __field, *fields
|
||||
if isinstance(fields[0], FunctionType):
|
||||
raise PydanticUserError(
|
||||
'`@validator` should be used with fields and keyword arguments, not bare. '
|
||||
"E.g. usage should be `@validator('<field_name>', ...)`",
|
||||
code='validator-no-fields',
|
||||
)
|
||||
elif not all(isinstance(field, str) for field in fields):
|
||||
raise PydanticUserError(
|
||||
'`@validator` fields should be passed as separate string args. '
|
||||
"E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`",
|
||||
code='validator-invalid-fields',
|
||||
)
|
||||
|
||||
mode: Literal['before', 'after'] = 'before' if pre is True else 'after'
|
||||
|
||||
def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]:
|
||||
if _decorators.is_instance_method_from_sig(f):
|
||||
raise PydanticUserError(
|
||||
'`@validator` cannot be applied to instance methods', code='validator-instance-method'
|
||||
)
|
||||
# auto apply the @classmethod decorator
|
||||
f = _decorators.ensure_classmethod_based_on_signature(f)
|
||||
wrap = _decorators_v1.make_generic_v1_field_validator
|
||||
validator_wrapper_info = _decorators.ValidatorDecoratorInfo(
|
||||
fields=fields,
|
||||
mode=mode,
|
||||
each_item=each_item,
|
||||
always=always,
|
||||
check_fields=check_fields,
|
||||
)
|
||||
return _decorators.PydanticDescriptorProxy(f, validator_wrapper_info, shim=wrap)
|
||||
|
||||
return dec # type: ignore[return-value]
|
||||
|
||||
|
||||
@overload
|
||||
def root_validator(
|
||||
*,
|
||||
# if you don't specify `pre` the default is `pre=False`
|
||||
# which means you need to specify `skip_on_failure=True`
|
||||
skip_on_failure: Literal[True],
|
||||
allow_reuse: bool = ...,
|
||||
) -> Callable[
|
||||
[_V1RootValidatorFunctionType],
|
||||
_V1RootValidatorFunctionType,
|
||||
]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def root_validator(
|
||||
*,
|
||||
# if you specify `pre=True` then you don't need to specify
|
||||
# `skip_on_failure`, in fact it is not allowed as an argument!
|
||||
pre: Literal[True],
|
||||
allow_reuse: bool = ...,
|
||||
) -> Callable[
|
||||
[_V1RootValidatorFunctionType],
|
||||
_V1RootValidatorFunctionType,
|
||||
]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def root_validator(
|
||||
*,
|
||||
# if you explicitly specify `pre=False` then you
|
||||
# MUST specify `skip_on_failure=True`
|
||||
pre: Literal[False],
|
||||
skip_on_failure: Literal[True],
|
||||
allow_reuse: bool = ...,
|
||||
) -> Callable[
|
||||
[_V1RootValidatorFunctionType],
|
||||
_V1RootValidatorFunctionType,
|
||||
]: ...
|
||||
|
||||
|
||||
@deprecated(
|
||||
'Pydantic V1 style `@root_validator` validators are deprecated.'
|
||||
' You should migrate to Pydantic V2 style `@model_validator` validators,'
|
||||
' see the migration guide for more details',
|
||||
category=None,
|
||||
)
|
||||
def root_validator(
|
||||
*__args,
|
||||
pre: bool = False,
|
||||
skip_on_failure: bool = False,
|
||||
allow_reuse: bool = False,
|
||||
) -> Any:
|
||||
"""Decorate methods on a model indicating that they should be used to validate (and perhaps
|
||||
modify) data either before or after standard model parsing/validation is performed.
|
||||
|
||||
Args:
|
||||
pre (bool, optional): Whether this validator should be called before the standard
|
||||
validators (else after). Defaults to False.
|
||||
skip_on_failure (bool, optional): Whether to stop validation and return as soon as a
|
||||
failure is encountered. Defaults to False.
|
||||
allow_reuse (bool, optional): Whether to track and raise an error if another validator
|
||||
refers to the decorated function. Defaults to False.
|
||||
|
||||
Returns:
|
||||
Any: A decorator that can be used to decorate a function to be used as a root_validator.
|
||||
"""
|
||||
warn(
|
||||
'Pydantic V1 style `@root_validator` validators are deprecated.'
|
||||
' You should migrate to Pydantic V2 style `@model_validator` validators,'
|
||||
' see the migration guide for more details',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
if __args:
|
||||
# Ensure a nice error is raised if someone attempts to use the bare decorator
|
||||
return root_validator()(*__args) # type: ignore
|
||||
|
||||
if allow_reuse is True: # pragma: no cover
|
||||
warn(_ALLOW_REUSE_WARNING_MESSAGE, DeprecationWarning)
|
||||
mode: Literal['before', 'after'] = 'before' if pre is True else 'after'
|
||||
if pre is False and skip_on_failure is not True:
|
||||
raise PydanticUserError(
|
||||
'If you use `@root_validator` with pre=False (the default) you MUST specify `skip_on_failure=True`.'
|
||||
' Note that `@root_validator` is deprecated and should be replaced with `@model_validator`.',
|
||||
code='root-validator-pre-skip',
|
||||
)
|
||||
|
||||
wrap = partial(_decorators_v1.make_v1_generic_root_validator, pre=pre)
|
||||
|
||||
def dec(f: Callable[..., Any] | classmethod[Any, Any, Any] | staticmethod[Any, Any]) -> Any:
|
||||
if _decorators.is_instance_method_from_sig(f):
|
||||
raise TypeError('`@root_validator` cannot be applied to instance methods')
|
||||
# auto apply the @classmethod decorator
|
||||
res = _decorators.ensure_classmethod_based_on_signature(f)
|
||||
dec_info = _decorators.RootValidatorDecoratorInfo(mode=mode)
|
||||
return _decorators.PydanticDescriptorProxy(res, dec_info, shim=wrap)
|
||||
|
||||
return dec
|
@ -0,0 +1,72 @@
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import warnings
|
||||
from typing import TYPE_CHECKING, Any, Literal
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from .._internal import _config
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
__all__ = 'BaseConfig', 'Extra'
|
||||
|
||||
|
||||
class _ConfigMetaclass(type):
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
try:
|
||||
obj = _config.config_defaults[item]
|
||||
warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning)
|
||||
return obj
|
||||
except KeyError as exc:
|
||||
raise AttributeError(f"type object '{self.__name__}' has no attribute {exc}") from exc
|
||||
|
||||
|
||||
@deprecated('BaseConfig is deprecated. Use the `pydantic.ConfigDict` instead.', category=PydanticDeprecatedSince20)
|
||||
class BaseConfig(metaclass=_ConfigMetaclass):
|
||||
"""This class is only retained for backwards compatibility.
|
||||
|
||||
!!! Warning "Deprecated"
|
||||
BaseConfig is deprecated. Use the [`pydantic.ConfigDict`][pydantic.ConfigDict] instead.
|
||||
"""
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
try:
|
||||
obj = super().__getattribute__(item)
|
||||
warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning)
|
||||
return obj
|
||||
except AttributeError as exc:
|
||||
try:
|
||||
return getattr(type(self), item)
|
||||
except AttributeError:
|
||||
# re-raising changes the displayed text to reflect that `self` is not a type
|
||||
raise AttributeError(str(exc)) from exc
|
||||
|
||||
def __init_subclass__(cls, **kwargs: Any) -> None:
|
||||
warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning)
|
||||
return super().__init_subclass__(**kwargs)
|
||||
|
||||
|
||||
class _ExtraMeta(type):
|
||||
def __getattribute__(self, __name: str) -> Any:
|
||||
# The @deprecated decorator accesses other attributes, so we only emit a warning for the expected ones
|
||||
if __name in {'allow', 'ignore', 'forbid'}:
|
||||
warnings.warn(
|
||||
"`pydantic.config.Extra` is deprecated, use literal values instead (e.g. `extra='allow'`)",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
return super().__getattribute__(__name)
|
||||
|
||||
|
||||
@deprecated(
|
||||
"Extra is deprecated. Use literal values instead (e.g. `extra='allow'`)", category=PydanticDeprecatedSince20
|
||||
)
|
||||
class Extra(metaclass=_ExtraMeta):
|
||||
allow: Literal['allow'] = 'allow'
|
||||
ignore: Literal['ignore'] = 'ignore'
|
||||
forbid: Literal['forbid'] = 'forbid'
|
@ -0,0 +1,224 @@
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import typing
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from typing import Any
|
||||
|
||||
import typing_extensions
|
||||
|
||||
from .._internal import (
|
||||
_model_construction,
|
||||
_typing_extra,
|
||||
_utils,
|
||||
)
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
from .. import BaseModel
|
||||
from .._internal._utils import AbstractSetIntStr, MappingIntStrAny
|
||||
|
||||
AnyClassMethod = classmethod[Any, Any, Any]
|
||||
TupleGenerator = typing.Generator[tuple[str, Any], None, None]
|
||||
Model = typing.TypeVar('Model', bound='BaseModel')
|
||||
# should be `set[int] | set[str] | dict[int, IncEx] | dict[str, IncEx] | None`, but mypy can't cope
|
||||
IncEx: typing_extensions.TypeAlias = 'set[int] | set[str] | dict[int, Any] | dict[str, Any] | None'
|
||||
|
||||
_object_setattr = _model_construction.object_setattr
|
||||
|
||||
|
||||
def _iter(
|
||||
self: BaseModel,
|
||||
to_dict: bool = False,
|
||||
by_alias: bool = False,
|
||||
include: AbstractSetIntStr | MappingIntStrAny | None = None,
|
||||
exclude: AbstractSetIntStr | MappingIntStrAny | None = None,
|
||||
exclude_unset: bool = False,
|
||||
exclude_defaults: bool = False,
|
||||
exclude_none: bool = False,
|
||||
) -> TupleGenerator:
|
||||
# Merge field set excludes with explicit exclude parameter with explicit overriding field set options.
|
||||
# The extra "is not None" guards are not logically necessary but optimizes performance for the simple case.
|
||||
if exclude is not None:
|
||||
exclude = _utils.ValueItems.merge(
|
||||
{k: v.exclude for k, v in self.__pydantic_fields__.items() if v.exclude is not None}, exclude
|
||||
)
|
||||
|
||||
if include is not None:
|
||||
include = _utils.ValueItems.merge({k: True for k in self.__pydantic_fields__}, include, intersect=True)
|
||||
|
||||
allowed_keys = _calculate_keys(self, include=include, exclude=exclude, exclude_unset=exclude_unset) # type: ignore
|
||||
if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none):
|
||||
# huge boost for plain _iter()
|
||||
yield from self.__dict__.items()
|
||||
if self.__pydantic_extra__:
|
||||
yield from self.__pydantic_extra__.items()
|
||||
return
|
||||
|
||||
value_exclude = _utils.ValueItems(self, exclude) if exclude is not None else None
|
||||
value_include = _utils.ValueItems(self, include) if include is not None else None
|
||||
|
||||
if self.__pydantic_extra__ is None:
|
||||
items = self.__dict__.items()
|
||||
else:
|
||||
items = list(self.__dict__.items()) + list(self.__pydantic_extra__.items())
|
||||
|
||||
for field_key, v in items:
|
||||
if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None):
|
||||
continue
|
||||
|
||||
if exclude_defaults:
|
||||
try:
|
||||
field = self.__pydantic_fields__[field_key]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
if not field.is_required() and field.default == v:
|
||||
continue
|
||||
|
||||
if by_alias and field_key in self.__pydantic_fields__:
|
||||
dict_key = self.__pydantic_fields__[field_key].alias or field_key
|
||||
else:
|
||||
dict_key = field_key
|
||||
|
||||
if to_dict or value_include or value_exclude:
|
||||
v = _get_value(
|
||||
type(self),
|
||||
v,
|
||||
to_dict=to_dict,
|
||||
by_alias=by_alias,
|
||||
include=value_include and value_include.for_element(field_key),
|
||||
exclude=value_exclude and value_exclude.for_element(field_key),
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
yield dict_key, v
|
||||
|
||||
|
||||
def _copy_and_set_values(
|
||||
self: Model,
|
||||
values: dict[str, Any],
|
||||
fields_set: set[str],
|
||||
extra: dict[str, Any] | None = None,
|
||||
private: dict[str, Any] | None = None,
|
||||
*,
|
||||
deep: bool, # UP006
|
||||
) -> Model:
|
||||
if deep:
|
||||
# chances of having empty dict here are quite low for using smart_deepcopy
|
||||
values = deepcopy(values)
|
||||
extra = deepcopy(extra)
|
||||
private = deepcopy(private)
|
||||
|
||||
cls = self.__class__
|
||||
m = cls.__new__(cls)
|
||||
_object_setattr(m, '__dict__', values)
|
||||
_object_setattr(m, '__pydantic_extra__', extra)
|
||||
_object_setattr(m, '__pydantic_fields_set__', fields_set)
|
||||
_object_setattr(m, '__pydantic_private__', private)
|
||||
|
||||
return m
|
||||
|
||||
|
||||
@typing.no_type_check
|
||||
def _get_value(
|
||||
cls: type[BaseModel],
|
||||
v: Any,
|
||||
to_dict: bool,
|
||||
by_alias: bool,
|
||||
include: AbstractSetIntStr | MappingIntStrAny | None,
|
||||
exclude: AbstractSetIntStr | MappingIntStrAny | None,
|
||||
exclude_unset: bool,
|
||||
exclude_defaults: bool,
|
||||
exclude_none: bool,
|
||||
) -> Any:
|
||||
from .. import BaseModel
|
||||
|
||||
if isinstance(v, BaseModel):
|
||||
if to_dict:
|
||||
return v.model_dump(
|
||||
by_alias=by_alias,
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
include=include, # type: ignore
|
||||
exclude=exclude, # type: ignore
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
else:
|
||||
return v.copy(include=include, exclude=exclude)
|
||||
|
||||
value_exclude = _utils.ValueItems(v, exclude) if exclude else None
|
||||
value_include = _utils.ValueItems(v, include) if include else None
|
||||
|
||||
if isinstance(v, dict):
|
||||
return {
|
||||
k_: _get_value(
|
||||
cls,
|
||||
v_,
|
||||
to_dict=to_dict,
|
||||
by_alias=by_alias,
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
include=value_include and value_include.for_element(k_),
|
||||
exclude=value_exclude and value_exclude.for_element(k_),
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
for k_, v_ in v.items()
|
||||
if (not value_exclude or not value_exclude.is_excluded(k_))
|
||||
and (not value_include or value_include.is_included(k_))
|
||||
}
|
||||
|
||||
elif _utils.sequence_like(v):
|
||||
seq_args = (
|
||||
_get_value(
|
||||
cls,
|
||||
v_,
|
||||
to_dict=to_dict,
|
||||
by_alias=by_alias,
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
include=value_include and value_include.for_element(i),
|
||||
exclude=value_exclude and value_exclude.for_element(i),
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
for i, v_ in enumerate(v)
|
||||
if (not value_exclude or not value_exclude.is_excluded(i))
|
||||
and (not value_include or value_include.is_included(i))
|
||||
)
|
||||
|
||||
return v.__class__(*seq_args) if _typing_extra.is_namedtuple(v.__class__) else v.__class__(seq_args)
|
||||
|
||||
elif isinstance(v, Enum) and getattr(cls.model_config, 'use_enum_values', False):
|
||||
return v.value
|
||||
|
||||
else:
|
||||
return v
|
||||
|
||||
|
||||
def _calculate_keys(
|
||||
self: BaseModel,
|
||||
include: MappingIntStrAny | None,
|
||||
exclude: MappingIntStrAny | None,
|
||||
exclude_unset: bool,
|
||||
update: dict[str, Any] | None = None, # noqa UP006
|
||||
) -> typing.AbstractSet[str] | None:
|
||||
if include is None and exclude is None and exclude_unset is False:
|
||||
return None
|
||||
|
||||
keys: typing.AbstractSet[str]
|
||||
if exclude_unset:
|
||||
keys = self.__pydantic_fields_set__.copy()
|
||||
else:
|
||||
keys = set(self.__dict__.keys())
|
||||
keys = keys | (self.__pydantic_extra__ or {}).keys()
|
||||
|
||||
if include is not None:
|
||||
keys &= include.keys()
|
||||
|
||||
if update:
|
||||
keys -= update.keys()
|
||||
|
||||
if exclude:
|
||||
keys -= {k for k, v in exclude.items() if _utils.ValueItems.is_true(v)}
|
||||
|
||||
return keys
|
@ -0,0 +1,284 @@
|
||||
import warnings
|
||||
from collections.abc import Mapping
|
||||
from functools import wraps
|
||||
from typing import TYPE_CHECKING, Any, Callable, Optional, TypeVar, Union, overload
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from .._internal import _config, _typing_extra
|
||||
from ..alias_generators import to_pascal
|
||||
from ..errors import PydanticUserError
|
||||
from ..functional_validators import field_validator
|
||||
from ..main import BaseModel, create_model
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
__all__ = ('validate_arguments',)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
AnyCallable = Callable[..., Any]
|
||||
|
||||
AnyCallableT = TypeVar('AnyCallableT', bound=AnyCallable)
|
||||
ConfigType = Union[None, type[Any], dict[str, Any]]
|
||||
|
||||
|
||||
@overload
|
||||
def validate_arguments(
|
||||
func: None = None, *, config: 'ConfigType' = None
|
||||
) -> Callable[['AnyCallableT'], 'AnyCallableT']: ...
|
||||
|
||||
|
||||
@overload
|
||||
def validate_arguments(func: 'AnyCallableT') -> 'AnyCallableT': ...
|
||||
|
||||
|
||||
@deprecated(
|
||||
'The `validate_arguments` method is deprecated; use `validate_call` instead.',
|
||||
category=None,
|
||||
)
|
||||
def validate_arguments(func: Optional['AnyCallableT'] = None, *, config: 'ConfigType' = None) -> Any:
|
||||
"""Decorator to validate the arguments passed to a function."""
|
||||
warnings.warn(
|
||||
'The `validate_arguments` method is deprecated; use `validate_call` instead.',
|
||||
PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
def validate(_func: 'AnyCallable') -> 'AnyCallable':
|
||||
vd = ValidatedFunction(_func, config)
|
||||
|
||||
@wraps(_func)
|
||||
def wrapper_function(*args: Any, **kwargs: Any) -> Any:
|
||||
return vd.call(*args, **kwargs)
|
||||
|
||||
wrapper_function.vd = vd # type: ignore
|
||||
wrapper_function.validate = vd.init_model_instance # type: ignore
|
||||
wrapper_function.raw_function = vd.raw_function # type: ignore
|
||||
wrapper_function.model = vd.model # type: ignore
|
||||
return wrapper_function
|
||||
|
||||
if func:
|
||||
return validate(func)
|
||||
else:
|
||||
return validate
|
||||
|
||||
|
||||
ALT_V_ARGS = 'v__args'
|
||||
ALT_V_KWARGS = 'v__kwargs'
|
||||
V_POSITIONAL_ONLY_NAME = 'v__positional_only'
|
||||
V_DUPLICATE_KWARGS = 'v__duplicate_kwargs'
|
||||
|
||||
|
||||
class ValidatedFunction:
|
||||
def __init__(self, function: 'AnyCallable', config: 'ConfigType'):
|
||||
from inspect import Parameter, signature
|
||||
|
||||
parameters: Mapping[str, Parameter] = signature(function).parameters
|
||||
|
||||
if parameters.keys() & {ALT_V_ARGS, ALT_V_KWARGS, V_POSITIONAL_ONLY_NAME, V_DUPLICATE_KWARGS}:
|
||||
raise PydanticUserError(
|
||||
f'"{ALT_V_ARGS}", "{ALT_V_KWARGS}", "{V_POSITIONAL_ONLY_NAME}" and "{V_DUPLICATE_KWARGS}" '
|
||||
f'are not permitted as argument names when using the "{validate_arguments.__name__}" decorator',
|
||||
code=None,
|
||||
)
|
||||
|
||||
self.raw_function = function
|
||||
self.arg_mapping: dict[int, str] = {}
|
||||
self.positional_only_args: set[str] = set()
|
||||
self.v_args_name = 'args'
|
||||
self.v_kwargs_name = 'kwargs'
|
||||
|
||||
type_hints = _typing_extra.get_type_hints(function, include_extras=True)
|
||||
takes_args = False
|
||||
takes_kwargs = False
|
||||
fields: dict[str, tuple[Any, Any]] = {}
|
||||
for i, (name, p) in enumerate(parameters.items()):
|
||||
if p.annotation is p.empty:
|
||||
annotation = Any
|
||||
else:
|
||||
annotation = type_hints[name]
|
||||
|
||||
default = ... if p.default is p.empty else p.default
|
||||
if p.kind == Parameter.POSITIONAL_ONLY:
|
||||
self.arg_mapping[i] = name
|
||||
fields[name] = annotation, default
|
||||
fields[V_POSITIONAL_ONLY_NAME] = list[str], None
|
||||
self.positional_only_args.add(name)
|
||||
elif p.kind == Parameter.POSITIONAL_OR_KEYWORD:
|
||||
self.arg_mapping[i] = name
|
||||
fields[name] = annotation, default
|
||||
fields[V_DUPLICATE_KWARGS] = list[str], None
|
||||
elif p.kind == Parameter.KEYWORD_ONLY:
|
||||
fields[name] = annotation, default
|
||||
elif p.kind == Parameter.VAR_POSITIONAL:
|
||||
self.v_args_name = name
|
||||
fields[name] = tuple[annotation, ...], None
|
||||
takes_args = True
|
||||
else:
|
||||
assert p.kind == Parameter.VAR_KEYWORD, p.kind
|
||||
self.v_kwargs_name = name
|
||||
fields[name] = dict[str, annotation], None
|
||||
takes_kwargs = True
|
||||
|
||||
# these checks avoid a clash between "args" and a field with that name
|
||||
if not takes_args and self.v_args_name in fields:
|
||||
self.v_args_name = ALT_V_ARGS
|
||||
|
||||
# same with "kwargs"
|
||||
if not takes_kwargs and self.v_kwargs_name in fields:
|
||||
self.v_kwargs_name = ALT_V_KWARGS
|
||||
|
||||
if not takes_args:
|
||||
# we add the field so validation below can raise the correct exception
|
||||
fields[self.v_args_name] = list[Any], None
|
||||
|
||||
if not takes_kwargs:
|
||||
# same with kwargs
|
||||
fields[self.v_kwargs_name] = dict[Any, Any], None
|
||||
|
||||
self.create_model(fields, takes_args, takes_kwargs, config)
|
||||
|
||||
def init_model_instance(self, *args: Any, **kwargs: Any) -> BaseModel:
|
||||
values = self.build_values(args, kwargs)
|
||||
return self.model(**values)
|
||||
|
||||
def call(self, *args: Any, **kwargs: Any) -> Any:
|
||||
m = self.init_model_instance(*args, **kwargs)
|
||||
return self.execute(m)
|
||||
|
||||
def build_values(self, args: tuple[Any, ...], kwargs: dict[str, Any]) -> dict[str, Any]:
|
||||
values: dict[str, Any] = {}
|
||||
if args:
|
||||
arg_iter = enumerate(args)
|
||||
while True:
|
||||
try:
|
||||
i, a = next(arg_iter)
|
||||
except StopIteration:
|
||||
break
|
||||
arg_name = self.arg_mapping.get(i)
|
||||
if arg_name is not None:
|
||||
values[arg_name] = a
|
||||
else:
|
||||
values[self.v_args_name] = [a] + [a for _, a in arg_iter]
|
||||
break
|
||||
|
||||
var_kwargs: dict[str, Any] = {}
|
||||
wrong_positional_args = []
|
||||
duplicate_kwargs = []
|
||||
fields_alias = [
|
||||
field.alias
|
||||
for name, field in self.model.__pydantic_fields__.items()
|
||||
if name not in (self.v_args_name, self.v_kwargs_name)
|
||||
]
|
||||
non_var_fields = set(self.model.__pydantic_fields__) - {self.v_args_name, self.v_kwargs_name}
|
||||
for k, v in kwargs.items():
|
||||
if k in non_var_fields or k in fields_alias:
|
||||
if k in self.positional_only_args:
|
||||
wrong_positional_args.append(k)
|
||||
if k in values:
|
||||
duplicate_kwargs.append(k)
|
||||
values[k] = v
|
||||
else:
|
||||
var_kwargs[k] = v
|
||||
|
||||
if var_kwargs:
|
||||
values[self.v_kwargs_name] = var_kwargs
|
||||
if wrong_positional_args:
|
||||
values[V_POSITIONAL_ONLY_NAME] = wrong_positional_args
|
||||
if duplicate_kwargs:
|
||||
values[V_DUPLICATE_KWARGS] = duplicate_kwargs
|
||||
return values
|
||||
|
||||
def execute(self, m: BaseModel) -> Any:
|
||||
d = {
|
||||
k: v
|
||||
for k, v in m.__dict__.items()
|
||||
if k in m.__pydantic_fields_set__ or m.__pydantic_fields__[k].default_factory
|
||||
}
|
||||
var_kwargs = d.pop(self.v_kwargs_name, {})
|
||||
|
||||
if self.v_args_name in d:
|
||||
args_: list[Any] = []
|
||||
in_kwargs = False
|
||||
kwargs = {}
|
||||
for name, value in d.items():
|
||||
if in_kwargs:
|
||||
kwargs[name] = value
|
||||
elif name == self.v_args_name:
|
||||
args_ += value
|
||||
in_kwargs = True
|
||||
else:
|
||||
args_.append(value)
|
||||
return self.raw_function(*args_, **kwargs, **var_kwargs)
|
||||
elif self.positional_only_args:
|
||||
args_ = []
|
||||
kwargs = {}
|
||||
for name, value in d.items():
|
||||
if name in self.positional_only_args:
|
||||
args_.append(value)
|
||||
else:
|
||||
kwargs[name] = value
|
||||
return self.raw_function(*args_, **kwargs, **var_kwargs)
|
||||
else:
|
||||
return self.raw_function(**d, **var_kwargs)
|
||||
|
||||
def create_model(self, fields: dict[str, Any], takes_args: bool, takes_kwargs: bool, config: 'ConfigType') -> None:
|
||||
pos_args = len(self.arg_mapping)
|
||||
|
||||
config_wrapper = _config.ConfigWrapper(config)
|
||||
|
||||
if config_wrapper.alias_generator:
|
||||
raise PydanticUserError(
|
||||
'Setting the "alias_generator" property on custom Config for '
|
||||
'@validate_arguments is not yet supported, please remove.',
|
||||
code=None,
|
||||
)
|
||||
if config_wrapper.extra is None:
|
||||
config_wrapper.config_dict['extra'] = 'forbid'
|
||||
|
||||
class DecoratorBaseModel(BaseModel):
|
||||
@field_validator(self.v_args_name, check_fields=False)
|
||||
@classmethod
|
||||
def check_args(cls, v: Optional[list[Any]]) -> Optional[list[Any]]:
|
||||
if takes_args or v is None:
|
||||
return v
|
||||
|
||||
raise TypeError(f'{pos_args} positional arguments expected but {pos_args + len(v)} given')
|
||||
|
||||
@field_validator(self.v_kwargs_name, check_fields=False)
|
||||
@classmethod
|
||||
def check_kwargs(cls, v: Optional[dict[str, Any]]) -> Optional[dict[str, Any]]:
|
||||
if takes_kwargs or v is None:
|
||||
return v
|
||||
|
||||
plural = '' if len(v) == 1 else 's'
|
||||
keys = ', '.join(map(repr, v.keys()))
|
||||
raise TypeError(f'unexpected keyword argument{plural}: {keys}')
|
||||
|
||||
@field_validator(V_POSITIONAL_ONLY_NAME, check_fields=False)
|
||||
@classmethod
|
||||
def check_positional_only(cls, v: Optional[list[str]]) -> None:
|
||||
if v is None:
|
||||
return
|
||||
|
||||
plural = '' if len(v) == 1 else 's'
|
||||
keys = ', '.join(map(repr, v))
|
||||
raise TypeError(f'positional-only argument{plural} passed as keyword argument{plural}: {keys}')
|
||||
|
||||
@field_validator(V_DUPLICATE_KWARGS, check_fields=False)
|
||||
@classmethod
|
||||
def check_duplicate_kwargs(cls, v: Optional[list[str]]) -> None:
|
||||
if v is None:
|
||||
return
|
||||
|
||||
plural = '' if len(v) == 1 else 's'
|
||||
keys = ', '.join(map(repr, v))
|
||||
raise TypeError(f'multiple values for argument{plural}: {keys}')
|
||||
|
||||
model_config = config_wrapper.config_dict
|
||||
|
||||
self.model = create_model(to_pascal(self.raw_function.__name__), __base__=DecoratorBaseModel, **fields)
|
141
venv/lib/python3.11/site-packages/pydantic/deprecated/json.py
Normal file
141
venv/lib/python3.11/site-packages/pydantic/deprecated/json.py
Normal file
@ -0,0 +1,141 @@
|
||||
import datetime
|
||||
import warnings
|
||||
from collections import deque
|
||||
from decimal import Decimal
|
||||
from enum import Enum
|
||||
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
|
||||
from pathlib import Path
|
||||
from re import Pattern
|
||||
from types import GeneratorType
|
||||
from typing import TYPE_CHECKING, Any, Callable, Union
|
||||
from uuid import UUID
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from .._internal._import_utils import import_cached_base_model
|
||||
from ..color import Color
|
||||
from ..networks import NameEmail
|
||||
from ..types import SecretBytes, SecretStr
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
__all__ = 'pydantic_encoder', 'custom_pydantic_encoder', 'timedelta_isoformat'
|
||||
|
||||
|
||||
def isoformat(o: Union[datetime.date, datetime.time]) -> str:
|
||||
return o.isoformat()
|
||||
|
||||
|
||||
def decimal_encoder(dec_value: Decimal) -> Union[int, float]:
|
||||
"""Encodes a Decimal as int of there's no exponent, otherwise float.
|
||||
|
||||
This is useful when we use ConstrainedDecimal to represent Numeric(x,0)
|
||||
where a integer (but not int typed) is used. Encoding this as a float
|
||||
results in failed round-tripping between encode and parse.
|
||||
Our Id type is a prime example of this.
|
||||
|
||||
>>> decimal_encoder(Decimal("1.0"))
|
||||
1.0
|
||||
|
||||
>>> decimal_encoder(Decimal("1"))
|
||||
1
|
||||
"""
|
||||
exponent = dec_value.as_tuple().exponent
|
||||
if isinstance(exponent, int) and exponent >= 0:
|
||||
return int(dec_value)
|
||||
else:
|
||||
return float(dec_value)
|
||||
|
||||
|
||||
ENCODERS_BY_TYPE: dict[type[Any], Callable[[Any], Any]] = {
|
||||
bytes: lambda o: o.decode(),
|
||||
Color: str,
|
||||
datetime.date: isoformat,
|
||||
datetime.datetime: isoformat,
|
||||
datetime.time: isoformat,
|
||||
datetime.timedelta: lambda td: td.total_seconds(),
|
||||
Decimal: decimal_encoder,
|
||||
Enum: lambda o: o.value,
|
||||
frozenset: list,
|
||||
deque: list,
|
||||
GeneratorType: list,
|
||||
IPv4Address: str,
|
||||
IPv4Interface: str,
|
||||
IPv4Network: str,
|
||||
IPv6Address: str,
|
||||
IPv6Interface: str,
|
||||
IPv6Network: str,
|
||||
NameEmail: str,
|
||||
Path: str,
|
||||
Pattern: lambda o: o.pattern,
|
||||
SecretBytes: str,
|
||||
SecretStr: str,
|
||||
set: list,
|
||||
UUID: str,
|
||||
}
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`pydantic_encoder` is deprecated, use `pydantic_core.to_jsonable_python` instead.',
|
||||
category=None,
|
||||
)
|
||||
def pydantic_encoder(obj: Any) -> Any:
|
||||
warnings.warn(
|
||||
'`pydantic_encoder` is deprecated, use `pydantic_core.to_jsonable_python` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
from dataclasses import asdict, is_dataclass
|
||||
|
||||
BaseModel = import_cached_base_model()
|
||||
|
||||
if isinstance(obj, BaseModel):
|
||||
return obj.model_dump()
|
||||
elif is_dataclass(obj):
|
||||
return asdict(obj) # type: ignore
|
||||
|
||||
# Check the class type and its superclasses for a matching encoder
|
||||
for base in obj.__class__.__mro__[:-1]:
|
||||
try:
|
||||
encoder = ENCODERS_BY_TYPE[base]
|
||||
except KeyError:
|
||||
continue
|
||||
return encoder(obj)
|
||||
else: # We have exited the for loop without finding a suitable encoder
|
||||
raise TypeError(f"Object of type '{obj.__class__.__name__}' is not JSON serializable")
|
||||
|
||||
|
||||
# TODO: Add a suggested migration path once there is a way to use custom encoders
|
||||
@deprecated(
|
||||
'`custom_pydantic_encoder` is deprecated, use `BaseModel.model_dump` instead.',
|
||||
category=None,
|
||||
)
|
||||
def custom_pydantic_encoder(type_encoders: dict[Any, Callable[[type[Any]], Any]], obj: Any) -> Any:
|
||||
warnings.warn(
|
||||
'`custom_pydantic_encoder` is deprecated, use `BaseModel.model_dump` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
# Check the class type and its superclasses for a matching encoder
|
||||
for base in obj.__class__.__mro__[:-1]:
|
||||
try:
|
||||
encoder = type_encoders[base]
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
return encoder(obj)
|
||||
else: # We have exited the for loop without finding a suitable encoder
|
||||
return pydantic_encoder(obj)
|
||||
|
||||
|
||||
@deprecated('`timedelta_isoformat` is deprecated.', category=None)
|
||||
def timedelta_isoformat(td: datetime.timedelta) -> str:
|
||||
"""ISO 8601 encoding for Python timedelta object."""
|
||||
warnings.warn('`timedelta_isoformat` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2)
|
||||
minutes, seconds = divmod(td.seconds, 60)
|
||||
hours, minutes = divmod(minutes, 60)
|
||||
return f'{"-" if td.days < 0 else ""}P{abs(td.days)}DT{hours:d}H{minutes:d}M{seconds:d}.{td.microseconds:06d}S'
|
@ -0,0 +1,80 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import pickle
|
||||
import warnings
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
|
||||
class Protocol(str, Enum):
|
||||
json = 'json'
|
||||
pickle = 'pickle'
|
||||
|
||||
|
||||
@deprecated('`load_str_bytes` is deprecated.', category=None)
|
||||
def load_str_bytes(
|
||||
b: str | bytes,
|
||||
*,
|
||||
content_type: str | None = None,
|
||||
encoding: str = 'utf8',
|
||||
proto: Protocol | None = None,
|
||||
allow_pickle: bool = False,
|
||||
json_loads: Callable[[str], Any] = json.loads,
|
||||
) -> Any:
|
||||
warnings.warn('`load_str_bytes` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2)
|
||||
if proto is None and content_type:
|
||||
if content_type.endswith(('json', 'javascript')):
|
||||
pass
|
||||
elif allow_pickle and content_type.endswith('pickle'):
|
||||
proto = Protocol.pickle
|
||||
else:
|
||||
raise TypeError(f'Unknown content-type: {content_type}')
|
||||
|
||||
proto = proto or Protocol.json
|
||||
|
||||
if proto == Protocol.json:
|
||||
if isinstance(b, bytes):
|
||||
b = b.decode(encoding)
|
||||
return json_loads(b) # type: ignore
|
||||
elif proto == Protocol.pickle:
|
||||
if not allow_pickle:
|
||||
raise RuntimeError('Trying to decode with pickle with allow_pickle=False')
|
||||
bb = b if isinstance(b, bytes) else b.encode() # type: ignore
|
||||
return pickle.loads(bb)
|
||||
else:
|
||||
raise TypeError(f'Unknown protocol: {proto}')
|
||||
|
||||
|
||||
@deprecated('`load_file` is deprecated.', category=None)
|
||||
def load_file(
|
||||
path: str | Path,
|
||||
*,
|
||||
content_type: str | None = None,
|
||||
encoding: str = 'utf8',
|
||||
proto: Protocol | None = None,
|
||||
allow_pickle: bool = False,
|
||||
json_loads: Callable[[str], Any] = json.loads,
|
||||
) -> Any:
|
||||
warnings.warn('`load_file` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2)
|
||||
path = Path(path)
|
||||
b = path.read_bytes()
|
||||
if content_type is None:
|
||||
if path.suffix in ('.js', '.json'):
|
||||
proto = Protocol.json
|
||||
elif path.suffix == '.pkl':
|
||||
proto = Protocol.pickle
|
||||
|
||||
return load_str_bytes(
|
||||
b, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=json_loads
|
||||
)
|
103
venv/lib/python3.11/site-packages/pydantic/deprecated/tools.py
Normal file
103
venv/lib/python3.11/site-packages/pydantic/deprecated/tools.py
Normal file
@ -0,0 +1,103 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import warnings
|
||||
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from ..json_schema import DEFAULT_REF_TEMPLATE, GenerateJsonSchema
|
||||
from ..type_adapter import TypeAdapter
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
__all__ = 'parse_obj_as', 'schema_of', 'schema_json_of'
|
||||
|
||||
NameFactory = Union[str, Callable[[type[Any]], str]]
|
||||
|
||||
|
||||
T = TypeVar('T')
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`parse_obj_as` is deprecated. Use `pydantic.TypeAdapter.validate_python` instead.',
|
||||
category=None,
|
||||
)
|
||||
def parse_obj_as(type_: type[T], obj: Any, type_name: NameFactory | None = None) -> T:
|
||||
warnings.warn(
|
||||
'`parse_obj_as` is deprecated. Use `pydantic.TypeAdapter.validate_python` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
if type_name is not None: # pragma: no cover
|
||||
warnings.warn(
|
||||
'The type_name parameter is deprecated. parse_obj_as no longer creates temporary models',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
return TypeAdapter(type_).validate_python(obj)
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`schema_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.',
|
||||
category=None,
|
||||
)
|
||||
def schema_of(
|
||||
type_: Any,
|
||||
*,
|
||||
title: NameFactory | None = None,
|
||||
by_alias: bool = True,
|
||||
ref_template: str = DEFAULT_REF_TEMPLATE,
|
||||
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
|
||||
) -> dict[str, Any]:
|
||||
"""Generate a JSON schema (as dict) for the passed model or dynamically generated one."""
|
||||
warnings.warn(
|
||||
'`schema_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
res = TypeAdapter(type_).json_schema(
|
||||
by_alias=by_alias,
|
||||
schema_generator=schema_generator,
|
||||
ref_template=ref_template,
|
||||
)
|
||||
if title is not None:
|
||||
if isinstance(title, str):
|
||||
res['title'] = title
|
||||
else:
|
||||
warnings.warn(
|
||||
'Passing a callable for the `title` parameter is deprecated and no longer supported',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
res['title'] = title(type_)
|
||||
return res
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`schema_json_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.',
|
||||
category=None,
|
||||
)
|
||||
def schema_json_of(
|
||||
type_: Any,
|
||||
*,
|
||||
title: NameFactory | None = None,
|
||||
by_alias: bool = True,
|
||||
ref_template: str = DEFAULT_REF_TEMPLATE,
|
||||
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
|
||||
**dumps_kwargs: Any,
|
||||
) -> str:
|
||||
"""Generate a JSON schema (as JSON) for the passed model or dynamically generated one."""
|
||||
warnings.warn(
|
||||
'`schema_json_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
return json.dumps(
|
||||
schema_of(type_, title=title, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator),
|
||||
**dumps_kwargs,
|
||||
)
|
Reference in New Issue
Block a user