Update 2025-04-13_16:25:39
This commit is contained in:
659
venv/lib/python3.11/site-packages/fastapi/_compat.py
Normal file
659
venv/lib/python3.11/site-packages/fastapi/_compat.py
Normal file
@ -0,0 +1,659 @@
|
||||
from collections import deque
|
||||
from copy import copy
|
||||
from dataclasses import dataclass, is_dataclass
|
||||
from enum import Enum
|
||||
from functools import lru_cache
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Deque,
|
||||
Dict,
|
||||
FrozenSet,
|
||||
List,
|
||||
Mapping,
|
||||
Sequence,
|
||||
Set,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
from fastapi.exceptions import RequestErrorModel
|
||||
from fastapi.types import IncEx, ModelNameMap, UnionType
|
||||
from pydantic import BaseModel, create_model
|
||||
from pydantic.version import VERSION as PYDANTIC_VERSION
|
||||
from starlette.datastructures import UploadFile
|
||||
from typing_extensions import Annotated, Literal, get_args, get_origin
|
||||
|
||||
PYDANTIC_VERSION_MINOR_TUPLE = tuple(int(x) for x in PYDANTIC_VERSION.split(".")[:2])
|
||||
PYDANTIC_V2 = PYDANTIC_VERSION_MINOR_TUPLE[0] == 2
|
||||
|
||||
|
||||
sequence_annotation_to_type = {
|
||||
Sequence: list,
|
||||
List: list,
|
||||
list: list,
|
||||
Tuple: tuple,
|
||||
tuple: tuple,
|
||||
Set: set,
|
||||
set: set,
|
||||
FrozenSet: frozenset,
|
||||
frozenset: frozenset,
|
||||
Deque: deque,
|
||||
deque: deque,
|
||||
}
|
||||
|
||||
sequence_types = tuple(sequence_annotation_to_type.keys())
|
||||
|
||||
Url: Type[Any]
|
||||
|
||||
if PYDANTIC_V2:
|
||||
from pydantic import PydanticSchemaGenerationError as PydanticSchemaGenerationError
|
||||
from pydantic import TypeAdapter
|
||||
from pydantic import ValidationError as ValidationError
|
||||
from pydantic._internal._schema_generation_shared import ( # type: ignore[attr-defined]
|
||||
GetJsonSchemaHandler as GetJsonSchemaHandler,
|
||||
)
|
||||
from pydantic._internal._typing_extra import eval_type_lenient
|
||||
from pydantic._internal._utils import lenient_issubclass as lenient_issubclass
|
||||
from pydantic.fields import FieldInfo
|
||||
from pydantic.json_schema import GenerateJsonSchema as GenerateJsonSchema
|
||||
from pydantic.json_schema import JsonSchemaValue as JsonSchemaValue
|
||||
from pydantic_core import CoreSchema as CoreSchema
|
||||
from pydantic_core import PydanticUndefined, PydanticUndefinedType
|
||||
from pydantic_core import Url as Url
|
||||
|
||||
try:
|
||||
from pydantic_core.core_schema import (
|
||||
with_info_plain_validator_function as with_info_plain_validator_function,
|
||||
)
|
||||
except ImportError: # pragma: no cover
|
||||
from pydantic_core.core_schema import (
|
||||
general_plain_validator_function as with_info_plain_validator_function, # noqa: F401
|
||||
)
|
||||
|
||||
RequiredParam = PydanticUndefined
|
||||
Undefined = PydanticUndefined
|
||||
UndefinedType = PydanticUndefinedType
|
||||
evaluate_forwardref = eval_type_lenient
|
||||
Validator = Any
|
||||
|
||||
class BaseConfig:
|
||||
pass
|
||||
|
||||
class ErrorWrapper(Exception):
|
||||
pass
|
||||
|
||||
@dataclass
|
||||
class ModelField:
|
||||
field_info: FieldInfo
|
||||
name: str
|
||||
mode: Literal["validation", "serialization"] = "validation"
|
||||
|
||||
@property
|
||||
def alias(self) -> str:
|
||||
a = self.field_info.alias
|
||||
return a if a is not None else self.name
|
||||
|
||||
@property
|
||||
def required(self) -> bool:
|
||||
return self.field_info.is_required()
|
||||
|
||||
@property
|
||||
def default(self) -> Any:
|
||||
return self.get_default()
|
||||
|
||||
@property
|
||||
def type_(self) -> Any:
|
||||
return self.field_info.annotation
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
self._type_adapter: TypeAdapter[Any] = TypeAdapter(
|
||||
Annotated[self.field_info.annotation, self.field_info]
|
||||
)
|
||||
|
||||
def get_default(self) -> Any:
|
||||
if self.field_info.is_required():
|
||||
return Undefined
|
||||
return self.field_info.get_default(call_default_factory=True)
|
||||
|
||||
def validate(
|
||||
self,
|
||||
value: Any,
|
||||
values: Dict[str, Any] = {}, # noqa: B006
|
||||
*,
|
||||
loc: Tuple[Union[int, str], ...] = (),
|
||||
) -> Tuple[Any, Union[List[Dict[str, Any]], None]]:
|
||||
try:
|
||||
return (
|
||||
self._type_adapter.validate_python(value, from_attributes=True),
|
||||
None,
|
||||
)
|
||||
except ValidationError as exc:
|
||||
return None, _regenerate_error_with_loc(
|
||||
errors=exc.errors(include_url=False), loc_prefix=loc
|
||||
)
|
||||
|
||||
def serialize(
|
||||
self,
|
||||
value: Any,
|
||||
*,
|
||||
mode: Literal["json", "python"] = "json",
|
||||
include: Union[IncEx, None] = None,
|
||||
exclude: Union[IncEx, None] = None,
|
||||
by_alias: bool = True,
|
||||
exclude_unset: bool = False,
|
||||
exclude_defaults: bool = False,
|
||||
exclude_none: bool = False,
|
||||
) -> Any:
|
||||
# What calls this code passes a value that already called
|
||||
# self._type_adapter.validate_python(value)
|
||||
return self._type_adapter.dump_python(
|
||||
value,
|
||||
mode=mode,
|
||||
include=include,
|
||||
exclude=exclude,
|
||||
by_alias=by_alias,
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
|
||||
def __hash__(self) -> int:
|
||||
# Each ModelField is unique for our purposes, to allow making a dict from
|
||||
# ModelField to its JSON Schema.
|
||||
return id(self)
|
||||
|
||||
def get_annotation_from_field_info(
|
||||
annotation: Any, field_info: FieldInfo, field_name: str
|
||||
) -> Any:
|
||||
return annotation
|
||||
|
||||
def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
|
||||
return errors # type: ignore[return-value]
|
||||
|
||||
def _model_rebuild(model: Type[BaseModel]) -> None:
|
||||
model.model_rebuild()
|
||||
|
||||
def _model_dump(
|
||||
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
|
||||
) -> Any:
|
||||
return model.model_dump(mode=mode, **kwargs)
|
||||
|
||||
def _get_model_config(model: BaseModel) -> Any:
|
||||
return model.model_config
|
||||
|
||||
def get_schema_from_model_field(
|
||||
*,
|
||||
field: ModelField,
|
||||
schema_generator: GenerateJsonSchema,
|
||||
model_name_map: ModelNameMap,
|
||||
field_mapping: Dict[
|
||||
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
|
||||
],
|
||||
separate_input_output_schemas: bool = True,
|
||||
) -> Dict[str, Any]:
|
||||
override_mode: Union[Literal["validation"], None] = (
|
||||
None if separate_input_output_schemas else "validation"
|
||||
)
|
||||
# This expects that GenerateJsonSchema was already used to generate the definitions
|
||||
json_schema = field_mapping[(field, override_mode or field.mode)]
|
||||
if "$ref" not in json_schema:
|
||||
# TODO remove when deprecating Pydantic v1
|
||||
# Ref: https://github.com/pydantic/pydantic/blob/d61792cc42c80b13b23e3ffa74bc37ec7c77f7d1/pydantic/schema.py#L207
|
||||
json_schema["title"] = (
|
||||
field.field_info.title or field.alias.title().replace("_", " ")
|
||||
)
|
||||
return json_schema
|
||||
|
||||
def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
|
||||
return {}
|
||||
|
||||
def get_definitions(
|
||||
*,
|
||||
fields: List[ModelField],
|
||||
schema_generator: GenerateJsonSchema,
|
||||
model_name_map: ModelNameMap,
|
||||
separate_input_output_schemas: bool = True,
|
||||
) -> Tuple[
|
||||
Dict[
|
||||
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
|
||||
],
|
||||
Dict[str, Dict[str, Any]],
|
||||
]:
|
||||
override_mode: Union[Literal["validation"], None] = (
|
||||
None if separate_input_output_schemas else "validation"
|
||||
)
|
||||
inputs = [
|
||||
(field, override_mode or field.mode, field._type_adapter.core_schema)
|
||||
for field in fields
|
||||
]
|
||||
field_mapping, definitions = schema_generator.generate_definitions(
|
||||
inputs=inputs
|
||||
)
|
||||
return field_mapping, definitions # type: ignore[return-value]
|
||||
|
||||
def is_scalar_field(field: ModelField) -> bool:
|
||||
from fastapi import params
|
||||
|
||||
return field_annotation_is_scalar(
|
||||
field.field_info.annotation
|
||||
) and not isinstance(field.field_info, params.Body)
|
||||
|
||||
def is_sequence_field(field: ModelField) -> bool:
|
||||
return field_annotation_is_sequence(field.field_info.annotation)
|
||||
|
||||
def is_scalar_sequence_field(field: ModelField) -> bool:
|
||||
return field_annotation_is_scalar_sequence(field.field_info.annotation)
|
||||
|
||||
def is_bytes_field(field: ModelField) -> bool:
|
||||
return is_bytes_or_nonable_bytes_annotation(field.type_)
|
||||
|
||||
def is_bytes_sequence_field(field: ModelField) -> bool:
|
||||
return is_bytes_sequence_annotation(field.type_)
|
||||
|
||||
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
|
||||
cls = type(field_info)
|
||||
merged_field_info = cls.from_annotation(annotation)
|
||||
new_field_info = copy(field_info)
|
||||
new_field_info.metadata = merged_field_info.metadata
|
||||
new_field_info.annotation = merged_field_info.annotation
|
||||
return new_field_info
|
||||
|
||||
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
|
||||
origin_type = (
|
||||
get_origin(field.field_info.annotation) or field.field_info.annotation
|
||||
)
|
||||
assert issubclass(origin_type, sequence_types) # type: ignore[arg-type]
|
||||
return sequence_annotation_to_type[origin_type](value) # type: ignore[no-any-return]
|
||||
|
||||
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
|
||||
error = ValidationError.from_exception_data(
|
||||
"Field required", [{"type": "missing", "loc": loc, "input": {}}]
|
||||
).errors(include_url=False)[0]
|
||||
error["input"] = None
|
||||
return error # type: ignore[return-value]
|
||||
|
||||
def create_body_model(
|
||||
*, fields: Sequence[ModelField], model_name: str
|
||||
) -> Type[BaseModel]:
|
||||
field_params = {f.name: (f.field_info.annotation, f.field_info) for f in fields}
|
||||
BodyModel: Type[BaseModel] = create_model(model_name, **field_params) # type: ignore[call-overload]
|
||||
return BodyModel
|
||||
|
||||
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
|
||||
return [
|
||||
ModelField(field_info=field_info, name=name)
|
||||
for name, field_info in model.model_fields.items()
|
||||
]
|
||||
|
||||
else:
|
||||
from fastapi.openapi.constants import REF_PREFIX as REF_PREFIX
|
||||
from pydantic import AnyUrl as Url # noqa: F401
|
||||
from pydantic import ( # type: ignore[assignment]
|
||||
BaseConfig as BaseConfig, # noqa: F401
|
||||
)
|
||||
from pydantic import ValidationError as ValidationError # noqa: F401
|
||||
from pydantic.class_validators import ( # type: ignore[no-redef]
|
||||
Validator as Validator, # noqa: F401
|
||||
)
|
||||
from pydantic.error_wrappers import ( # type: ignore[no-redef]
|
||||
ErrorWrapper as ErrorWrapper, # noqa: F401
|
||||
)
|
||||
from pydantic.errors import MissingError
|
||||
from pydantic.fields import ( # type: ignore[attr-defined]
|
||||
SHAPE_FROZENSET,
|
||||
SHAPE_LIST,
|
||||
SHAPE_SEQUENCE,
|
||||
SHAPE_SET,
|
||||
SHAPE_SINGLETON,
|
||||
SHAPE_TUPLE,
|
||||
SHAPE_TUPLE_ELLIPSIS,
|
||||
)
|
||||
from pydantic.fields import FieldInfo as FieldInfo
|
||||
from pydantic.fields import ( # type: ignore[no-redef,attr-defined]
|
||||
ModelField as ModelField, # noqa: F401
|
||||
)
|
||||
|
||||
# Keeping old "Required" functionality from Pydantic V1, without
|
||||
# shadowing typing.Required.
|
||||
RequiredParam: Any = Ellipsis # type: ignore[no-redef]
|
||||
from pydantic.fields import ( # type: ignore[no-redef,attr-defined]
|
||||
Undefined as Undefined,
|
||||
)
|
||||
from pydantic.fields import ( # type: ignore[no-redef, attr-defined]
|
||||
UndefinedType as UndefinedType, # noqa: F401
|
||||
)
|
||||
from pydantic.schema import (
|
||||
field_schema,
|
||||
get_flat_models_from_fields,
|
||||
get_model_name_map,
|
||||
model_process_schema,
|
||||
)
|
||||
from pydantic.schema import ( # type: ignore[no-redef] # noqa: F401
|
||||
get_annotation_from_field_info as get_annotation_from_field_info,
|
||||
)
|
||||
from pydantic.typing import ( # type: ignore[no-redef]
|
||||
evaluate_forwardref as evaluate_forwardref, # noqa: F401
|
||||
)
|
||||
from pydantic.utils import ( # type: ignore[no-redef]
|
||||
lenient_issubclass as lenient_issubclass, # noqa: F401
|
||||
)
|
||||
|
||||
GetJsonSchemaHandler = Any # type: ignore[assignment,misc]
|
||||
JsonSchemaValue = Dict[str, Any] # type: ignore[misc]
|
||||
CoreSchema = Any # type: ignore[assignment,misc]
|
||||
|
||||
sequence_shapes = {
|
||||
SHAPE_LIST,
|
||||
SHAPE_SET,
|
||||
SHAPE_FROZENSET,
|
||||
SHAPE_TUPLE,
|
||||
SHAPE_SEQUENCE,
|
||||
SHAPE_TUPLE_ELLIPSIS,
|
||||
}
|
||||
sequence_shape_to_type = {
|
||||
SHAPE_LIST: list,
|
||||
SHAPE_SET: set,
|
||||
SHAPE_TUPLE: tuple,
|
||||
SHAPE_SEQUENCE: list,
|
||||
SHAPE_TUPLE_ELLIPSIS: list,
|
||||
}
|
||||
|
||||
@dataclass
|
||||
class GenerateJsonSchema: # type: ignore[no-redef]
|
||||
ref_template: str
|
||||
|
||||
class PydanticSchemaGenerationError(Exception): # type: ignore[no-redef]
|
||||
pass
|
||||
|
||||
def with_info_plain_validator_function( # type: ignore[misc]
|
||||
function: Callable[..., Any],
|
||||
*,
|
||||
ref: Union[str, None] = None,
|
||||
metadata: Any = None,
|
||||
serialization: Any = None,
|
||||
) -> Any:
|
||||
return {}
|
||||
|
||||
def get_model_definitions(
|
||||
*,
|
||||
flat_models: Set[Union[Type[BaseModel], Type[Enum]]],
|
||||
model_name_map: Dict[Union[Type[BaseModel], Type[Enum]], str],
|
||||
) -> Dict[str, Any]:
|
||||
definitions: Dict[str, Dict[str, Any]] = {}
|
||||
for model in flat_models:
|
||||
m_schema, m_definitions, m_nested_models = model_process_schema(
|
||||
model, model_name_map=model_name_map, ref_prefix=REF_PREFIX
|
||||
)
|
||||
definitions.update(m_definitions)
|
||||
model_name = model_name_map[model]
|
||||
if "description" in m_schema:
|
||||
m_schema["description"] = m_schema["description"].split("\f")[0]
|
||||
definitions[model_name] = m_schema
|
||||
return definitions
|
||||
|
||||
def is_pv1_scalar_field(field: ModelField) -> bool:
|
||||
from fastapi import params
|
||||
|
||||
field_info = field.field_info
|
||||
if not (
|
||||
field.shape == SHAPE_SINGLETON # type: ignore[attr-defined]
|
||||
and not lenient_issubclass(field.type_, BaseModel)
|
||||
and not lenient_issubclass(field.type_, dict)
|
||||
and not field_annotation_is_sequence(field.type_)
|
||||
and not is_dataclass(field.type_)
|
||||
and not isinstance(field_info, params.Body)
|
||||
):
|
||||
return False
|
||||
if field.sub_fields: # type: ignore[attr-defined]
|
||||
if not all(
|
||||
is_pv1_scalar_field(f)
|
||||
for f in field.sub_fields # type: ignore[attr-defined]
|
||||
):
|
||||
return False
|
||||
return True
|
||||
|
||||
def is_pv1_scalar_sequence_field(field: ModelField) -> bool:
|
||||
if (field.shape in sequence_shapes) and not lenient_issubclass( # type: ignore[attr-defined]
|
||||
field.type_, BaseModel
|
||||
):
|
||||
if field.sub_fields is not None: # type: ignore[attr-defined]
|
||||
for sub_field in field.sub_fields: # type: ignore[attr-defined]
|
||||
if not is_pv1_scalar_field(sub_field):
|
||||
return False
|
||||
return True
|
||||
if _annotation_is_sequence(field.type_):
|
||||
return True
|
||||
return False
|
||||
|
||||
def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
|
||||
use_errors: List[Any] = []
|
||||
for error in errors:
|
||||
if isinstance(error, ErrorWrapper):
|
||||
new_errors = ValidationError( # type: ignore[call-arg]
|
||||
errors=[error], model=RequestErrorModel
|
||||
).errors()
|
||||
use_errors.extend(new_errors)
|
||||
elif isinstance(error, list):
|
||||
use_errors.extend(_normalize_errors(error))
|
||||
else:
|
||||
use_errors.append(error)
|
||||
return use_errors
|
||||
|
||||
def _model_rebuild(model: Type[BaseModel]) -> None:
|
||||
model.update_forward_refs()
|
||||
|
||||
def _model_dump(
|
||||
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
|
||||
) -> Any:
|
||||
return model.dict(**kwargs)
|
||||
|
||||
def _get_model_config(model: BaseModel) -> Any:
|
||||
return model.__config__ # type: ignore[attr-defined]
|
||||
|
||||
def get_schema_from_model_field(
|
||||
*,
|
||||
field: ModelField,
|
||||
schema_generator: GenerateJsonSchema,
|
||||
model_name_map: ModelNameMap,
|
||||
field_mapping: Dict[
|
||||
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
|
||||
],
|
||||
separate_input_output_schemas: bool = True,
|
||||
) -> Dict[str, Any]:
|
||||
# This expects that GenerateJsonSchema was already used to generate the definitions
|
||||
return field_schema( # type: ignore[no-any-return]
|
||||
field, model_name_map=model_name_map, ref_prefix=REF_PREFIX
|
||||
)[0]
|
||||
|
||||
def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
|
||||
models = get_flat_models_from_fields(fields, known_models=set())
|
||||
return get_model_name_map(models) # type: ignore[no-any-return]
|
||||
|
||||
def get_definitions(
|
||||
*,
|
||||
fields: List[ModelField],
|
||||
schema_generator: GenerateJsonSchema,
|
||||
model_name_map: ModelNameMap,
|
||||
separate_input_output_schemas: bool = True,
|
||||
) -> Tuple[
|
||||
Dict[
|
||||
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
|
||||
],
|
||||
Dict[str, Dict[str, Any]],
|
||||
]:
|
||||
models = get_flat_models_from_fields(fields, known_models=set())
|
||||
return {}, get_model_definitions(
|
||||
flat_models=models, model_name_map=model_name_map
|
||||
)
|
||||
|
||||
def is_scalar_field(field: ModelField) -> bool:
|
||||
return is_pv1_scalar_field(field)
|
||||
|
||||
def is_sequence_field(field: ModelField) -> bool:
|
||||
return field.shape in sequence_shapes or _annotation_is_sequence(field.type_) # type: ignore[attr-defined]
|
||||
|
||||
def is_scalar_sequence_field(field: ModelField) -> bool:
|
||||
return is_pv1_scalar_sequence_field(field)
|
||||
|
||||
def is_bytes_field(field: ModelField) -> bool:
|
||||
return lenient_issubclass(field.type_, bytes)
|
||||
|
||||
def is_bytes_sequence_field(field: ModelField) -> bool:
|
||||
return field.shape in sequence_shapes and lenient_issubclass(field.type_, bytes) # type: ignore[attr-defined]
|
||||
|
||||
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
|
||||
return copy(field_info)
|
||||
|
||||
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
|
||||
return sequence_shape_to_type[field.shape](value) # type: ignore[no-any-return,attr-defined]
|
||||
|
||||
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
|
||||
missing_field_error = ErrorWrapper(MissingError(), loc=loc) # type: ignore[call-arg]
|
||||
new_error = ValidationError([missing_field_error], RequestErrorModel)
|
||||
return new_error.errors()[0] # type: ignore[return-value]
|
||||
|
||||
def create_body_model(
|
||||
*, fields: Sequence[ModelField], model_name: str
|
||||
) -> Type[BaseModel]:
|
||||
BodyModel = create_model(model_name)
|
||||
for f in fields:
|
||||
BodyModel.__fields__[f.name] = f # type: ignore[index]
|
||||
return BodyModel
|
||||
|
||||
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
|
||||
return list(model.__fields__.values()) # type: ignore[attr-defined]
|
||||
|
||||
|
||||
def _regenerate_error_with_loc(
|
||||
*, errors: Sequence[Any], loc_prefix: Tuple[Union[str, int], ...]
|
||||
) -> List[Dict[str, Any]]:
|
||||
updated_loc_errors: List[Any] = [
|
||||
{**err, "loc": loc_prefix + err.get("loc", ())}
|
||||
for err in _normalize_errors(errors)
|
||||
]
|
||||
|
||||
return updated_loc_errors
|
||||
|
||||
|
||||
def _annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
|
||||
if lenient_issubclass(annotation, (str, bytes)):
|
||||
return False
|
||||
return lenient_issubclass(annotation, sequence_types)
|
||||
|
||||
|
||||
def field_annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
|
||||
origin = get_origin(annotation)
|
||||
if origin is Union or origin is UnionType:
|
||||
for arg in get_args(annotation):
|
||||
if field_annotation_is_sequence(arg):
|
||||
return True
|
||||
return False
|
||||
return _annotation_is_sequence(annotation) or _annotation_is_sequence(
|
||||
get_origin(annotation)
|
||||
)
|
||||
|
||||
|
||||
def value_is_sequence(value: Any) -> bool:
|
||||
return isinstance(value, sequence_types) and not isinstance(value, (str, bytes)) # type: ignore[arg-type]
|
||||
|
||||
|
||||
def _annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
|
||||
return (
|
||||
lenient_issubclass(annotation, (BaseModel, Mapping, UploadFile))
|
||||
or _annotation_is_sequence(annotation)
|
||||
or is_dataclass(annotation)
|
||||
)
|
||||
|
||||
|
||||
def field_annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
|
||||
origin = get_origin(annotation)
|
||||
if origin is Union or origin is UnionType:
|
||||
return any(field_annotation_is_complex(arg) for arg in get_args(annotation))
|
||||
|
||||
return (
|
||||
_annotation_is_complex(annotation)
|
||||
or _annotation_is_complex(origin)
|
||||
or hasattr(origin, "__pydantic_core_schema__")
|
||||
or hasattr(origin, "__get_pydantic_core_schema__")
|
||||
)
|
||||
|
||||
|
||||
def field_annotation_is_scalar(annotation: Any) -> bool:
|
||||
# handle Ellipsis here to make tuple[int, ...] work nicely
|
||||
return annotation is Ellipsis or not field_annotation_is_complex(annotation)
|
||||
|
||||
|
||||
def field_annotation_is_scalar_sequence(annotation: Union[Type[Any], None]) -> bool:
|
||||
origin = get_origin(annotation)
|
||||
if origin is Union or origin is UnionType:
|
||||
at_least_one_scalar_sequence = False
|
||||
for arg in get_args(annotation):
|
||||
if field_annotation_is_scalar_sequence(arg):
|
||||
at_least_one_scalar_sequence = True
|
||||
continue
|
||||
elif not field_annotation_is_scalar(arg):
|
||||
return False
|
||||
return at_least_one_scalar_sequence
|
||||
return field_annotation_is_sequence(annotation) and all(
|
||||
field_annotation_is_scalar(sub_annotation)
|
||||
for sub_annotation in get_args(annotation)
|
||||
)
|
||||
|
||||
|
||||
def is_bytes_or_nonable_bytes_annotation(annotation: Any) -> bool:
|
||||
if lenient_issubclass(annotation, bytes):
|
||||
return True
|
||||
origin = get_origin(annotation)
|
||||
if origin is Union or origin is UnionType:
|
||||
for arg in get_args(annotation):
|
||||
if lenient_issubclass(arg, bytes):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_uploadfile_or_nonable_uploadfile_annotation(annotation: Any) -> bool:
|
||||
if lenient_issubclass(annotation, UploadFile):
|
||||
return True
|
||||
origin = get_origin(annotation)
|
||||
if origin is Union or origin is UnionType:
|
||||
for arg in get_args(annotation):
|
||||
if lenient_issubclass(arg, UploadFile):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_bytes_sequence_annotation(annotation: Any) -> bool:
|
||||
origin = get_origin(annotation)
|
||||
if origin is Union or origin is UnionType:
|
||||
at_least_one = False
|
||||
for arg in get_args(annotation):
|
||||
if is_bytes_sequence_annotation(arg):
|
||||
at_least_one = True
|
||||
continue
|
||||
return at_least_one
|
||||
return field_annotation_is_sequence(annotation) and all(
|
||||
is_bytes_or_nonable_bytes_annotation(sub_annotation)
|
||||
for sub_annotation in get_args(annotation)
|
||||
)
|
||||
|
||||
|
||||
def is_uploadfile_sequence_annotation(annotation: Any) -> bool:
|
||||
origin = get_origin(annotation)
|
||||
if origin is Union or origin is UnionType:
|
||||
at_least_one = False
|
||||
for arg in get_args(annotation):
|
||||
if is_uploadfile_sequence_annotation(arg):
|
||||
at_least_one = True
|
||||
continue
|
||||
return at_least_one
|
||||
return field_annotation_is_sequence(annotation) and all(
|
||||
is_uploadfile_or_nonable_uploadfile_annotation(sub_annotation)
|
||||
for sub_annotation in get_args(annotation)
|
||||
)
|
||||
|
||||
|
||||
@lru_cache
|
||||
def get_cached_model_fields(model: Type[BaseModel]) -> List[ModelField]:
|
||||
return get_model_fields(model)
|
Reference in New Issue
Block a user