Update 2025-04-17_20:04:08
This commit is contained in:
@ -0,0 +1,828 @@
|
||||
"""This module contains related classes and functions for validation."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import dataclasses
|
||||
import sys
|
||||
from functools import partialmethod
|
||||
from types import FunctionType
|
||||
from typing import TYPE_CHECKING, Annotated, Any, Callable, Literal, TypeVar, Union, cast, overload
|
||||
|
||||
from pydantic_core import PydanticUndefined, core_schema
|
||||
from pydantic_core import core_schema as _core_schema
|
||||
from typing_extensions import Self, TypeAlias
|
||||
|
||||
from ._internal import _decorators, _generics, _internal_dataclass
|
||||
from .annotated_handlers import GetCoreSchemaHandler
|
||||
from .errors import PydanticUserError
|
||||
|
||||
if sys.version_info < (3, 11):
|
||||
from typing_extensions import Protocol
|
||||
else:
|
||||
from typing import Protocol
|
||||
|
||||
_inspect_validator = _decorators.inspect_validator
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
|
||||
class AfterValidator:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field *after* validators](../concepts/validators.md#field-after-validator)
|
||||
|
||||
A metadata class that indicates that a validation should be applied **after** the inner validation logic.
|
||||
|
||||
Attributes:
|
||||
func: The validator function.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import AfterValidator, BaseModel, ValidationError
|
||||
|
||||
MyInt = Annotated[int, AfterValidator(lambda v: v + 1)]
|
||||
|
||||
class Model(BaseModel):
|
||||
a: MyInt
|
||||
|
||||
print(Model(a=1).a)
|
||||
#> 2
|
||||
|
||||
try:
|
||||
Model(a='a')
|
||||
except ValidationError as e:
|
||||
print(e.json(indent=2))
|
||||
'''
|
||||
[
|
||||
{
|
||||
"type": "int_parsing",
|
||||
"loc": [
|
||||
"a"
|
||||
],
|
||||
"msg": "Input should be a valid integer, unable to parse string as an integer",
|
||||
"input": "a",
|
||||
"url": "https://errors.pydantic.dev/2/v/int_parsing"
|
||||
}
|
||||
]
|
||||
'''
|
||||
```
|
||||
"""
|
||||
|
||||
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
|
||||
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
schema = handler(source_type)
|
||||
info_arg = _inspect_validator(self.func, 'after')
|
||||
if info_arg:
|
||||
func = cast(core_schema.WithInfoValidatorFunction, self.func)
|
||||
return core_schema.with_info_after_validator_function(func, schema=schema, field_name=handler.field_name)
|
||||
else:
|
||||
func = cast(core_schema.NoInfoValidatorFunction, self.func)
|
||||
return core_schema.no_info_after_validator_function(func, schema=schema)
|
||||
|
||||
@classmethod
|
||||
def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
|
||||
return cls(func=decorator.func)
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
|
||||
class BeforeValidator:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field *before* validators](../concepts/validators.md#field-before-validator)
|
||||
|
||||
A metadata class that indicates that a validation should be applied **before** the inner validation logic.
|
||||
|
||||
Attributes:
|
||||
func: The validator function.
|
||||
json_schema_input_type: The input type of the function. This is only used to generate the appropriate
|
||||
JSON Schema (in validation mode).
|
||||
|
||||
Example:
|
||||
```python
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel, BeforeValidator
|
||||
|
||||
MyInt = Annotated[int, BeforeValidator(lambda v: v + 1)]
|
||||
|
||||
class Model(BaseModel):
|
||||
a: MyInt
|
||||
|
||||
print(Model(a=1).a)
|
||||
#> 2
|
||||
|
||||
try:
|
||||
Model(a='a')
|
||||
except TypeError as e:
|
||||
print(e)
|
||||
#> can only concatenate str (not "int") to str
|
||||
```
|
||||
"""
|
||||
|
||||
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
|
||||
json_schema_input_type: Any = PydanticUndefined
|
||||
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
schema = handler(source_type)
|
||||
input_schema = (
|
||||
None
|
||||
if self.json_schema_input_type is PydanticUndefined
|
||||
else handler.generate_schema(self.json_schema_input_type)
|
||||
)
|
||||
|
||||
info_arg = _inspect_validator(self.func, 'before')
|
||||
if info_arg:
|
||||
func = cast(core_schema.WithInfoValidatorFunction, self.func)
|
||||
return core_schema.with_info_before_validator_function(
|
||||
func,
|
||||
schema=schema,
|
||||
field_name=handler.field_name,
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
else:
|
||||
func = cast(core_schema.NoInfoValidatorFunction, self.func)
|
||||
return core_schema.no_info_before_validator_function(
|
||||
func, schema=schema, json_schema_input_schema=input_schema
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
|
||||
return cls(
|
||||
func=decorator.func,
|
||||
json_schema_input_type=decorator.info.json_schema_input_type,
|
||||
)
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
|
||||
class PlainValidator:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field *plain* validators](../concepts/validators.md#field-plain-validator)
|
||||
|
||||
A metadata class that indicates that a validation should be applied **instead** of the inner validation logic.
|
||||
|
||||
!!! note
|
||||
Before v2.9, `PlainValidator` wasn't always compatible with JSON Schema generation for `mode='validation'`.
|
||||
You can now use the `json_schema_input_type` argument to specify the input type of the function
|
||||
to be used in the JSON schema when `mode='validation'` (the default). See the example below for more details.
|
||||
|
||||
Attributes:
|
||||
func: The validator function.
|
||||
json_schema_input_type: The input type of the function. This is only used to generate the appropriate
|
||||
JSON Schema (in validation mode). If not provided, will default to `Any`.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from typing import Annotated, Union
|
||||
|
||||
from pydantic import BaseModel, PlainValidator
|
||||
|
||||
MyInt = Annotated[
|
||||
int,
|
||||
PlainValidator(
|
||||
lambda v: int(v) + 1, json_schema_input_type=Union[str, int] # (1)!
|
||||
),
|
||||
]
|
||||
|
||||
class Model(BaseModel):
|
||||
a: MyInt
|
||||
|
||||
print(Model(a='1').a)
|
||||
#> 2
|
||||
|
||||
print(Model(a=1).a)
|
||||
#> 2
|
||||
```
|
||||
|
||||
1. In this example, we've specified the `json_schema_input_type` as `Union[str, int]` which indicates to the JSON schema
|
||||
generator that in validation mode, the input type for the `a` field can be either a `str` or an `int`.
|
||||
"""
|
||||
|
||||
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
|
||||
json_schema_input_type: Any = Any
|
||||
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
# Note that for some valid uses of PlainValidator, it is not possible to generate a core schema for the
|
||||
# source_type, so calling `handler(source_type)` will error, which prevents us from generating a proper
|
||||
# serialization schema. To work around this for use cases that will not involve serialization, we simply
|
||||
# catch any PydanticSchemaGenerationError that may be raised while attempting to build the serialization schema
|
||||
# and abort any attempts to handle special serialization.
|
||||
from pydantic import PydanticSchemaGenerationError
|
||||
|
||||
try:
|
||||
schema = handler(source_type)
|
||||
# TODO if `schema['serialization']` is one of `'include-exclude-dict/sequence',
|
||||
# schema validation will fail. That's why we use 'type ignore' comments below.
|
||||
serialization = schema.get(
|
||||
'serialization',
|
||||
core_schema.wrap_serializer_function_ser_schema(
|
||||
function=lambda v, h: h(v),
|
||||
schema=schema,
|
||||
return_schema=handler.generate_schema(source_type),
|
||||
),
|
||||
)
|
||||
except PydanticSchemaGenerationError:
|
||||
serialization = None
|
||||
|
||||
input_schema = handler.generate_schema(self.json_schema_input_type)
|
||||
|
||||
info_arg = _inspect_validator(self.func, 'plain')
|
||||
if info_arg:
|
||||
func = cast(core_schema.WithInfoValidatorFunction, self.func)
|
||||
return core_schema.with_info_plain_validator_function(
|
||||
func,
|
||||
field_name=handler.field_name,
|
||||
serialization=serialization, # pyright: ignore[reportArgumentType]
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
else:
|
||||
func = cast(core_schema.NoInfoValidatorFunction, self.func)
|
||||
return core_schema.no_info_plain_validator_function(
|
||||
func,
|
||||
serialization=serialization, # pyright: ignore[reportArgumentType]
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
|
||||
return cls(
|
||||
func=decorator.func,
|
||||
json_schema_input_type=decorator.info.json_schema_input_type,
|
||||
)
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
|
||||
class WrapValidator:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field *wrap* validators](../concepts/validators.md#field-wrap-validator)
|
||||
|
||||
A metadata class that indicates that a validation should be applied **around** the inner validation logic.
|
||||
|
||||
Attributes:
|
||||
func: The validator function.
|
||||
json_schema_input_type: The input type of the function. This is only used to generate the appropriate
|
||||
JSON Schema (in validation mode).
|
||||
|
||||
```python
|
||||
from datetime import datetime
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel, ValidationError, WrapValidator
|
||||
|
||||
def validate_timestamp(v, handler):
|
||||
if v == 'now':
|
||||
# we don't want to bother with further validation, just return the new value
|
||||
return datetime.now()
|
||||
try:
|
||||
return handler(v)
|
||||
except ValidationError:
|
||||
# validation failed, in this case we want to return a default value
|
||||
return datetime(2000, 1, 1)
|
||||
|
||||
MyTimestamp = Annotated[datetime, WrapValidator(validate_timestamp)]
|
||||
|
||||
class Model(BaseModel):
|
||||
a: MyTimestamp
|
||||
|
||||
print(Model(a='now').a)
|
||||
#> 2032-01-02 03:04:05.000006
|
||||
print(Model(a='invalid').a)
|
||||
#> 2000-01-01 00:00:00
|
||||
```
|
||||
"""
|
||||
|
||||
func: core_schema.NoInfoWrapValidatorFunction | core_schema.WithInfoWrapValidatorFunction
|
||||
json_schema_input_type: Any = PydanticUndefined
|
||||
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
schema = handler(source_type)
|
||||
input_schema = (
|
||||
None
|
||||
if self.json_schema_input_type is PydanticUndefined
|
||||
else handler.generate_schema(self.json_schema_input_type)
|
||||
)
|
||||
|
||||
info_arg = _inspect_validator(self.func, 'wrap')
|
||||
if info_arg:
|
||||
func = cast(core_schema.WithInfoWrapValidatorFunction, self.func)
|
||||
return core_schema.with_info_wrap_validator_function(
|
||||
func,
|
||||
schema=schema,
|
||||
field_name=handler.field_name,
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
else:
|
||||
func = cast(core_schema.NoInfoWrapValidatorFunction, self.func)
|
||||
return core_schema.no_info_wrap_validator_function(
|
||||
func,
|
||||
schema=schema,
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
|
||||
return cls(
|
||||
func=decorator.func,
|
||||
json_schema_input_type=decorator.info.json_schema_input_type,
|
||||
)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
||||
class _OnlyValueValidatorClsMethod(Protocol):
|
||||
def __call__(self, cls: Any, value: Any, /) -> Any: ...
|
||||
|
||||
class _V2ValidatorClsMethod(Protocol):
|
||||
def __call__(self, cls: Any, value: Any, info: _core_schema.ValidationInfo, /) -> Any: ...
|
||||
|
||||
class _OnlyValueWrapValidatorClsMethod(Protocol):
|
||||
def __call__(self, cls: Any, value: Any, handler: _core_schema.ValidatorFunctionWrapHandler, /) -> Any: ...
|
||||
|
||||
class _V2WrapValidatorClsMethod(Protocol):
|
||||
def __call__(
|
||||
self,
|
||||
cls: Any,
|
||||
value: Any,
|
||||
handler: _core_schema.ValidatorFunctionWrapHandler,
|
||||
info: _core_schema.ValidationInfo,
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
_V2Validator = Union[
|
||||
_V2ValidatorClsMethod,
|
||||
_core_schema.WithInfoValidatorFunction,
|
||||
_OnlyValueValidatorClsMethod,
|
||||
_core_schema.NoInfoValidatorFunction,
|
||||
]
|
||||
|
||||
_V2WrapValidator = Union[
|
||||
_V2WrapValidatorClsMethod,
|
||||
_core_schema.WithInfoWrapValidatorFunction,
|
||||
_OnlyValueWrapValidatorClsMethod,
|
||||
_core_schema.NoInfoWrapValidatorFunction,
|
||||
]
|
||||
|
||||
_PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]]
|
||||
|
||||
_V2BeforeAfterOrPlainValidatorType = TypeVar(
|
||||
'_V2BeforeAfterOrPlainValidatorType',
|
||||
bound=Union[_V2Validator, _PartialClsOrStaticMethod],
|
||||
)
|
||||
_V2WrapValidatorType = TypeVar('_V2WrapValidatorType', bound=Union[_V2WrapValidator, _PartialClsOrStaticMethod])
|
||||
|
||||
FieldValidatorModes: TypeAlias = Literal['before', 'after', 'wrap', 'plain']
|
||||
|
||||
|
||||
@overload
|
||||
def field_validator(
|
||||
field: str,
|
||||
/,
|
||||
*fields: str,
|
||||
mode: Literal['wrap'],
|
||||
check_fields: bool | None = ...,
|
||||
json_schema_input_type: Any = ...,
|
||||
) -> Callable[[_V2WrapValidatorType], _V2WrapValidatorType]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def field_validator(
|
||||
field: str,
|
||||
/,
|
||||
*fields: str,
|
||||
mode: Literal['before', 'plain'],
|
||||
check_fields: bool | None = ...,
|
||||
json_schema_input_type: Any = ...,
|
||||
) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def field_validator(
|
||||
field: str,
|
||||
/,
|
||||
*fields: str,
|
||||
mode: Literal['after'] = ...,
|
||||
check_fields: bool | None = ...,
|
||||
) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]: ...
|
||||
|
||||
|
||||
def field_validator(
|
||||
field: str,
|
||||
/,
|
||||
*fields: str,
|
||||
mode: FieldValidatorModes = 'after',
|
||||
check_fields: bool | None = None,
|
||||
json_schema_input_type: Any = PydanticUndefined,
|
||||
) -> Callable[[Any], Any]:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field validators](../concepts/validators.md#field-validators)
|
||||
|
||||
Decorate methods on the class indicating that they should be used to validate fields.
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
from typing import Any
|
||||
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ValidationError,
|
||||
field_validator,
|
||||
)
|
||||
|
||||
class Model(BaseModel):
|
||||
a: str
|
||||
|
||||
@field_validator('a')
|
||||
@classmethod
|
||||
def ensure_foobar(cls, v: Any):
|
||||
if 'foobar' not in v:
|
||||
raise ValueError('"foobar" not found in a')
|
||||
return v
|
||||
|
||||
print(repr(Model(a='this is foobar good')))
|
||||
#> Model(a='this is foobar good')
|
||||
|
||||
try:
|
||||
Model(a='snap')
|
||||
except ValidationError as exc_info:
|
||||
print(exc_info)
|
||||
'''
|
||||
1 validation error for Model
|
||||
a
|
||||
Value error, "foobar" not found in a [type=value_error, input_value='snap', input_type=str]
|
||||
'''
|
||||
```
|
||||
|
||||
For more in depth examples, see [Field Validators](../concepts/validators.md#field-validators).
|
||||
|
||||
Args:
|
||||
field: The first field the `field_validator` should be called on; this is separate
|
||||
from `fields` to ensure an error is raised if you don't pass at least one.
|
||||
*fields: Additional field(s) the `field_validator` should be called on.
|
||||
mode: Specifies whether to validate the fields before or after validation.
|
||||
check_fields: Whether to check that the fields actually exist on the model.
|
||||
json_schema_input_type: The input type of the function. This is only used to generate
|
||||
the appropriate JSON Schema (in validation mode) and can only specified
|
||||
when `mode` is either `'before'`, `'plain'` or `'wrap'`.
|
||||
|
||||
Returns:
|
||||
A decorator that can be used to decorate a function to be used as a field_validator.
|
||||
|
||||
Raises:
|
||||
PydanticUserError:
|
||||
- If `@field_validator` is used bare (with no fields).
|
||||
- If the args passed to `@field_validator` as fields are not strings.
|
||||
- If `@field_validator` applied to instance methods.
|
||||
"""
|
||||
if isinstance(field, FunctionType):
|
||||
raise PydanticUserError(
|
||||
'`@field_validator` should be used with fields and keyword arguments, not bare. '
|
||||
"E.g. usage should be `@validator('<field_name>', ...)`",
|
||||
code='validator-no-fields',
|
||||
)
|
||||
|
||||
if mode not in ('before', 'plain', 'wrap') and json_schema_input_type is not PydanticUndefined:
|
||||
raise PydanticUserError(
|
||||
f"`json_schema_input_type` can't be used when mode is set to {mode!r}",
|
||||
code='validator-input-type',
|
||||
)
|
||||
|
||||
if json_schema_input_type is PydanticUndefined and mode == 'plain':
|
||||
json_schema_input_type = Any
|
||||
|
||||
fields = field, *fields
|
||||
if not all(isinstance(field, str) for field in fields):
|
||||
raise PydanticUserError(
|
||||
'`@field_validator` fields should be passed as separate string args. '
|
||||
"E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`",
|
||||
code='validator-invalid-fields',
|
||||
)
|
||||
|
||||
def dec(
|
||||
f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any],
|
||||
) -> _decorators.PydanticDescriptorProxy[Any]:
|
||||
if _decorators.is_instance_method_from_sig(f):
|
||||
raise PydanticUserError(
|
||||
'`@field_validator` cannot be applied to instance methods', code='validator-instance-method'
|
||||
)
|
||||
|
||||
# auto apply the @classmethod decorator
|
||||
f = _decorators.ensure_classmethod_based_on_signature(f)
|
||||
|
||||
dec_info = _decorators.FieldValidatorDecoratorInfo(
|
||||
fields=fields, mode=mode, check_fields=check_fields, json_schema_input_type=json_schema_input_type
|
||||
)
|
||||
return _decorators.PydanticDescriptorProxy(f, dec_info)
|
||||
|
||||
return dec
|
||||
|
||||
|
||||
_ModelType = TypeVar('_ModelType')
|
||||
_ModelTypeCo = TypeVar('_ModelTypeCo', covariant=True)
|
||||
|
||||
|
||||
class ModelWrapValidatorHandler(_core_schema.ValidatorFunctionWrapHandler, Protocol[_ModelTypeCo]):
|
||||
"""`@model_validator` decorated function handler argument type. This is used when `mode='wrap'`."""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
value: Any,
|
||||
outer_location: str | int | None = None,
|
||||
/,
|
||||
) -> _ModelTypeCo: # pragma: no cover
|
||||
...
|
||||
|
||||
|
||||
class ModelWrapValidatorWithoutInfo(Protocol[_ModelType]):
|
||||
"""A `@model_validator` decorated function signature.
|
||||
This is used when `mode='wrap'` and the function does not have info argument.
|
||||
"""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
cls: type[_ModelType],
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
value: Any,
|
||||
handler: ModelWrapValidatorHandler[_ModelType],
|
||||
/,
|
||||
) -> _ModelType: ...
|
||||
|
||||
|
||||
class ModelWrapValidator(Protocol[_ModelType]):
|
||||
"""A `@model_validator` decorated function signature. This is used when `mode='wrap'`."""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
cls: type[_ModelType],
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
value: Any,
|
||||
handler: ModelWrapValidatorHandler[_ModelType],
|
||||
info: _core_schema.ValidationInfo,
|
||||
/,
|
||||
) -> _ModelType: ...
|
||||
|
||||
|
||||
class FreeModelBeforeValidatorWithoutInfo(Protocol):
|
||||
"""A `@model_validator` decorated function signature.
|
||||
This is used when `mode='before'` and the function does not have info argument.
|
||||
"""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
value: Any,
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
class ModelBeforeValidatorWithoutInfo(Protocol):
|
||||
"""A `@model_validator` decorated function signature.
|
||||
This is used when `mode='before'` and the function does not have info argument.
|
||||
"""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
cls: Any,
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
value: Any,
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
class FreeModelBeforeValidator(Protocol):
|
||||
"""A `@model_validator` decorated function signature. This is used when `mode='before'`."""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
value: Any,
|
||||
info: _core_schema.ValidationInfo,
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
class ModelBeforeValidator(Protocol):
|
||||
"""A `@model_validator` decorated function signature. This is used when `mode='before'`."""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
cls: Any,
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
value: Any,
|
||||
info: _core_schema.ValidationInfo,
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
ModelAfterValidatorWithoutInfo = Callable[[_ModelType], _ModelType]
|
||||
"""A `@model_validator` decorated function signature. This is used when `mode='after'` and the function does not
|
||||
have info argument.
|
||||
"""
|
||||
|
||||
ModelAfterValidator = Callable[[_ModelType, _core_schema.ValidationInfo], _ModelType]
|
||||
"""A `@model_validator` decorated function signature. This is used when `mode='after'`."""
|
||||
|
||||
_AnyModelWrapValidator = Union[ModelWrapValidator[_ModelType], ModelWrapValidatorWithoutInfo[_ModelType]]
|
||||
_AnyModelBeforeValidator = Union[
|
||||
FreeModelBeforeValidator, ModelBeforeValidator, FreeModelBeforeValidatorWithoutInfo, ModelBeforeValidatorWithoutInfo
|
||||
]
|
||||
_AnyModelAfterValidator = Union[ModelAfterValidator[_ModelType], ModelAfterValidatorWithoutInfo[_ModelType]]
|
||||
|
||||
|
||||
@overload
|
||||
def model_validator(
|
||||
*,
|
||||
mode: Literal['wrap'],
|
||||
) -> Callable[
|
||||
[_AnyModelWrapValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
|
||||
]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def model_validator(
|
||||
*,
|
||||
mode: Literal['before'],
|
||||
) -> Callable[
|
||||
[_AnyModelBeforeValidator], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
|
||||
]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def model_validator(
|
||||
*,
|
||||
mode: Literal['after'],
|
||||
) -> Callable[
|
||||
[_AnyModelAfterValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
|
||||
]: ...
|
||||
|
||||
|
||||
def model_validator(
|
||||
*,
|
||||
mode: Literal['wrap', 'before', 'after'],
|
||||
) -> Any:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[Model Validators](../concepts/validators.md#model-validators)
|
||||
|
||||
Decorate model methods for validation purposes.
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
from typing_extensions import Self
|
||||
|
||||
from pydantic import BaseModel, ValidationError, model_validator
|
||||
|
||||
class Square(BaseModel):
|
||||
width: float
|
||||
height: float
|
||||
|
||||
@model_validator(mode='after')
|
||||
def verify_square(self) -> Self:
|
||||
if self.width != self.height:
|
||||
raise ValueError('width and height do not match')
|
||||
return self
|
||||
|
||||
s = Square(width=1, height=1)
|
||||
print(repr(s))
|
||||
#> Square(width=1.0, height=1.0)
|
||||
|
||||
try:
|
||||
Square(width=1, height=2)
|
||||
except ValidationError as e:
|
||||
print(e)
|
||||
'''
|
||||
1 validation error for Square
|
||||
Value error, width and height do not match [type=value_error, input_value={'width': 1, 'height': 2}, input_type=dict]
|
||||
'''
|
||||
```
|
||||
|
||||
For more in depth examples, see [Model Validators](../concepts/validators.md#model-validators).
|
||||
|
||||
Args:
|
||||
mode: A required string literal that specifies the validation mode.
|
||||
It can be one of the following: 'wrap', 'before', or 'after'.
|
||||
|
||||
Returns:
|
||||
A decorator that can be used to decorate a function to be used as a model validator.
|
||||
"""
|
||||
|
||||
def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]:
|
||||
# auto apply the @classmethod decorator
|
||||
f = _decorators.ensure_classmethod_based_on_signature(f)
|
||||
dec_info = _decorators.ModelValidatorDecoratorInfo(mode=mode)
|
||||
return _decorators.PydanticDescriptorProxy(f, dec_info)
|
||||
|
||||
return dec
|
||||
|
||||
|
||||
AnyType = TypeVar('AnyType')
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
# If we add configurable attributes to IsInstance, we'd probably need to stop hiding it from type checkers like this
|
||||
InstanceOf = Annotated[AnyType, ...] # `IsInstance[Sequence]` will be recognized by type checkers as `Sequence`
|
||||
|
||||
else:
|
||||
|
||||
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
||||
class InstanceOf:
|
||||
'''Generic type for annotating a type that is an instance of a given class.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from pydantic import BaseModel, InstanceOf
|
||||
|
||||
class Foo:
|
||||
...
|
||||
|
||||
class Bar(BaseModel):
|
||||
foo: InstanceOf[Foo]
|
||||
|
||||
Bar(foo=Foo())
|
||||
try:
|
||||
Bar(foo=42)
|
||||
except ValidationError as e:
|
||||
print(e)
|
||||
"""
|
||||
[
|
||||
│ {
|
||||
│ │ 'type': 'is_instance_of',
|
||||
│ │ 'loc': ('foo',),
|
||||
│ │ 'msg': 'Input should be an instance of Foo',
|
||||
│ │ 'input': 42,
|
||||
│ │ 'ctx': {'class': 'Foo'},
|
||||
│ │ 'url': 'https://errors.pydantic.dev/0.38.0/v/is_instance_of'
|
||||
│ }
|
||||
]
|
||||
"""
|
||||
```
|
||||
'''
|
||||
|
||||
@classmethod
|
||||
def __class_getitem__(cls, item: AnyType) -> AnyType:
|
||||
return Annotated[item, cls()]
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
from pydantic import PydanticSchemaGenerationError
|
||||
|
||||
# use the generic _origin_ as the second argument to isinstance when appropriate
|
||||
instance_of_schema = core_schema.is_instance_schema(_generics.get_origin(source) or source)
|
||||
|
||||
try:
|
||||
# Try to generate the "standard" schema, which will be used when loading from JSON
|
||||
original_schema = handler(source)
|
||||
except PydanticSchemaGenerationError:
|
||||
# If that fails, just produce a schema that can validate from python
|
||||
return instance_of_schema
|
||||
else:
|
||||
# Use the "original" approach to serialization
|
||||
instance_of_schema['serialization'] = core_schema.wrap_serializer_function_ser_schema(
|
||||
function=lambda v, h: h(v), schema=original_schema
|
||||
)
|
||||
return core_schema.json_or_python_schema(python_schema=instance_of_schema, json_schema=original_schema)
|
||||
|
||||
__hash__ = object.__hash__
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
SkipValidation = Annotated[AnyType, ...] # SkipValidation[list[str]] will be treated by type checkers as list[str]
|
||||
else:
|
||||
|
||||
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
||||
class SkipValidation:
|
||||
"""If this is applied as an annotation (e.g., via `x: Annotated[int, SkipValidation]`), validation will be
|
||||
skipped. You can also use `SkipValidation[int]` as a shorthand for `Annotated[int, SkipValidation]`.
|
||||
|
||||
This can be useful if you want to use a type annotation for documentation/IDE/type-checking purposes,
|
||||
and know that it is safe to skip validation for one or more of the fields.
|
||||
|
||||
Because this converts the validation schema to `any_schema`, subsequent annotation-applied transformations
|
||||
may not have the expected effects. Therefore, when used, this annotation should generally be the final
|
||||
annotation applied to a type.
|
||||
"""
|
||||
|
||||
def __class_getitem__(cls, item: Any) -> Any:
|
||||
return Annotated[item, SkipValidation()]
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
original_schema = handler(source)
|
||||
metadata = {'pydantic_js_annotation_functions': [lambda _c, h: h(original_schema)]}
|
||||
return core_schema.any_schema(
|
||||
metadata=metadata,
|
||||
serialization=core_schema.wrap_serializer_function_ser_schema(
|
||||
function=lambda v, h: h(v), schema=original_schema
|
||||
),
|
||||
)
|
||||
|
||||
__hash__ = object.__hash__
|
Reference in New Issue
Block a user