Update 2025-04-13_16:49:18
This commit is contained in:
445
venv/lib/python3.11/site-packages/pydantic/__init__.py
Normal file
445
venv/lib/python3.11/site-packages/pydantic/__init__.py
Normal file
@ -0,0 +1,445 @@
|
||||
import typing
|
||||
from importlib import import_module
|
||||
from warnings import warn
|
||||
|
||||
from ._migration import getattr_migration
|
||||
from .version import VERSION
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
# import of virtually everything is supported via `__getattr__` below,
|
||||
# but we need them here for type checking and IDE support
|
||||
import pydantic_core
|
||||
from pydantic_core.core_schema import (
|
||||
FieldSerializationInfo,
|
||||
SerializationInfo,
|
||||
SerializerFunctionWrapHandler,
|
||||
ValidationInfo,
|
||||
ValidatorFunctionWrapHandler,
|
||||
)
|
||||
|
||||
from . import dataclasses
|
||||
from .aliases import AliasChoices, AliasGenerator, AliasPath
|
||||
from .annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler
|
||||
from .config import ConfigDict, with_config
|
||||
from .errors import *
|
||||
from .fields import Field, PrivateAttr, computed_field
|
||||
from .functional_serializers import (
|
||||
PlainSerializer,
|
||||
SerializeAsAny,
|
||||
WrapSerializer,
|
||||
field_serializer,
|
||||
model_serializer,
|
||||
)
|
||||
from .functional_validators import (
|
||||
AfterValidator,
|
||||
BeforeValidator,
|
||||
InstanceOf,
|
||||
ModelWrapValidatorHandler,
|
||||
PlainValidator,
|
||||
SkipValidation,
|
||||
WrapValidator,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from .json_schema import WithJsonSchema
|
||||
from .main import *
|
||||
from .networks import *
|
||||
from .type_adapter import TypeAdapter
|
||||
from .types import *
|
||||
from .validate_call_decorator import validate_call
|
||||
from .warnings import (
|
||||
PydanticDeprecatedSince20,
|
||||
PydanticDeprecatedSince26,
|
||||
PydanticDeprecatedSince29,
|
||||
PydanticDeprecatedSince210,
|
||||
PydanticDeprecatedSince211,
|
||||
PydanticDeprecationWarning,
|
||||
PydanticExperimentalWarning,
|
||||
)
|
||||
|
||||
# this encourages pycharm to import `ValidationError` from here, not pydantic_core
|
||||
ValidationError = pydantic_core.ValidationError
|
||||
from .deprecated.class_validators import root_validator, validator
|
||||
from .deprecated.config import BaseConfig, Extra
|
||||
from .deprecated.tools import *
|
||||
from .root_model import RootModel
|
||||
|
||||
__version__ = VERSION
|
||||
__all__ = (
|
||||
# dataclasses
|
||||
'dataclasses',
|
||||
# functional validators
|
||||
'field_validator',
|
||||
'model_validator',
|
||||
'AfterValidator',
|
||||
'BeforeValidator',
|
||||
'PlainValidator',
|
||||
'WrapValidator',
|
||||
'SkipValidation',
|
||||
'InstanceOf',
|
||||
'ModelWrapValidatorHandler',
|
||||
# JSON Schema
|
||||
'WithJsonSchema',
|
||||
# deprecated V1 functional validators, these are imported via `__getattr__` below
|
||||
'root_validator',
|
||||
'validator',
|
||||
# functional serializers
|
||||
'field_serializer',
|
||||
'model_serializer',
|
||||
'PlainSerializer',
|
||||
'SerializeAsAny',
|
||||
'WrapSerializer',
|
||||
# config
|
||||
'ConfigDict',
|
||||
'with_config',
|
||||
# deprecated V1 config, these are imported via `__getattr__` below
|
||||
'BaseConfig',
|
||||
'Extra',
|
||||
# validate_call
|
||||
'validate_call',
|
||||
# errors
|
||||
'PydanticErrorCodes',
|
||||
'PydanticUserError',
|
||||
'PydanticSchemaGenerationError',
|
||||
'PydanticImportError',
|
||||
'PydanticUndefinedAnnotation',
|
||||
'PydanticInvalidForJsonSchema',
|
||||
'PydanticForbiddenQualifier',
|
||||
# fields
|
||||
'Field',
|
||||
'computed_field',
|
||||
'PrivateAttr',
|
||||
# alias
|
||||
'AliasChoices',
|
||||
'AliasGenerator',
|
||||
'AliasPath',
|
||||
# main
|
||||
'BaseModel',
|
||||
'create_model',
|
||||
# network
|
||||
'AnyUrl',
|
||||
'AnyHttpUrl',
|
||||
'FileUrl',
|
||||
'HttpUrl',
|
||||
'FtpUrl',
|
||||
'WebsocketUrl',
|
||||
'AnyWebsocketUrl',
|
||||
'UrlConstraints',
|
||||
'EmailStr',
|
||||
'NameEmail',
|
||||
'IPvAnyAddress',
|
||||
'IPvAnyInterface',
|
||||
'IPvAnyNetwork',
|
||||
'PostgresDsn',
|
||||
'CockroachDsn',
|
||||
'AmqpDsn',
|
||||
'RedisDsn',
|
||||
'MongoDsn',
|
||||
'KafkaDsn',
|
||||
'NatsDsn',
|
||||
'MySQLDsn',
|
||||
'MariaDBDsn',
|
||||
'ClickHouseDsn',
|
||||
'SnowflakeDsn',
|
||||
'validate_email',
|
||||
# root_model
|
||||
'RootModel',
|
||||
# deprecated tools, these are imported via `__getattr__` below
|
||||
'parse_obj_as',
|
||||
'schema_of',
|
||||
'schema_json_of',
|
||||
# types
|
||||
'Strict',
|
||||
'StrictStr',
|
||||
'conbytes',
|
||||
'conlist',
|
||||
'conset',
|
||||
'confrozenset',
|
||||
'constr',
|
||||
'StringConstraints',
|
||||
'ImportString',
|
||||
'conint',
|
||||
'PositiveInt',
|
||||
'NegativeInt',
|
||||
'NonNegativeInt',
|
||||
'NonPositiveInt',
|
||||
'confloat',
|
||||
'PositiveFloat',
|
||||
'NegativeFloat',
|
||||
'NonNegativeFloat',
|
||||
'NonPositiveFloat',
|
||||
'FiniteFloat',
|
||||
'condecimal',
|
||||
'condate',
|
||||
'UUID1',
|
||||
'UUID3',
|
||||
'UUID4',
|
||||
'UUID5',
|
||||
'UUID6',
|
||||
'UUID7',
|
||||
'UUID8',
|
||||
'FilePath',
|
||||
'DirectoryPath',
|
||||
'NewPath',
|
||||
'Json',
|
||||
'Secret',
|
||||
'SecretStr',
|
||||
'SecretBytes',
|
||||
'SocketPath',
|
||||
'StrictBool',
|
||||
'StrictBytes',
|
||||
'StrictInt',
|
||||
'StrictFloat',
|
||||
'PaymentCardNumber',
|
||||
'ByteSize',
|
||||
'PastDate',
|
||||
'FutureDate',
|
||||
'PastDatetime',
|
||||
'FutureDatetime',
|
||||
'AwareDatetime',
|
||||
'NaiveDatetime',
|
||||
'AllowInfNan',
|
||||
'EncoderProtocol',
|
||||
'EncodedBytes',
|
||||
'EncodedStr',
|
||||
'Base64Encoder',
|
||||
'Base64Bytes',
|
||||
'Base64Str',
|
||||
'Base64UrlBytes',
|
||||
'Base64UrlStr',
|
||||
'GetPydanticSchema',
|
||||
'Tag',
|
||||
'Discriminator',
|
||||
'JsonValue',
|
||||
'FailFast',
|
||||
# type_adapter
|
||||
'TypeAdapter',
|
||||
# version
|
||||
'__version__',
|
||||
'VERSION',
|
||||
# warnings
|
||||
'PydanticDeprecatedSince20',
|
||||
'PydanticDeprecatedSince26',
|
||||
'PydanticDeprecatedSince29',
|
||||
'PydanticDeprecatedSince210',
|
||||
'PydanticDeprecatedSince211',
|
||||
'PydanticDeprecationWarning',
|
||||
'PydanticExperimentalWarning',
|
||||
# annotated handlers
|
||||
'GetCoreSchemaHandler',
|
||||
'GetJsonSchemaHandler',
|
||||
# pydantic_core
|
||||
'ValidationError',
|
||||
'ValidationInfo',
|
||||
'SerializationInfo',
|
||||
'ValidatorFunctionWrapHandler',
|
||||
'FieldSerializationInfo',
|
||||
'SerializerFunctionWrapHandler',
|
||||
'OnErrorOmit',
|
||||
)
|
||||
|
||||
# A mapping of {<member name>: (package, <module name>)} defining dynamic imports
|
||||
_dynamic_imports: 'dict[str, tuple[str, str]]' = {
|
||||
'dataclasses': (__spec__.parent, '__module__'),
|
||||
# functional validators
|
||||
'field_validator': (__spec__.parent, '.functional_validators'),
|
||||
'model_validator': (__spec__.parent, '.functional_validators'),
|
||||
'AfterValidator': (__spec__.parent, '.functional_validators'),
|
||||
'BeforeValidator': (__spec__.parent, '.functional_validators'),
|
||||
'PlainValidator': (__spec__.parent, '.functional_validators'),
|
||||
'WrapValidator': (__spec__.parent, '.functional_validators'),
|
||||
'SkipValidation': (__spec__.parent, '.functional_validators'),
|
||||
'InstanceOf': (__spec__.parent, '.functional_validators'),
|
||||
'ModelWrapValidatorHandler': (__spec__.parent, '.functional_validators'),
|
||||
# JSON Schema
|
||||
'WithJsonSchema': (__spec__.parent, '.json_schema'),
|
||||
# functional serializers
|
||||
'field_serializer': (__spec__.parent, '.functional_serializers'),
|
||||
'model_serializer': (__spec__.parent, '.functional_serializers'),
|
||||
'PlainSerializer': (__spec__.parent, '.functional_serializers'),
|
||||
'SerializeAsAny': (__spec__.parent, '.functional_serializers'),
|
||||
'WrapSerializer': (__spec__.parent, '.functional_serializers'),
|
||||
# config
|
||||
'ConfigDict': (__spec__.parent, '.config'),
|
||||
'with_config': (__spec__.parent, '.config'),
|
||||
# validate call
|
||||
'validate_call': (__spec__.parent, '.validate_call_decorator'),
|
||||
# errors
|
||||
'PydanticErrorCodes': (__spec__.parent, '.errors'),
|
||||
'PydanticUserError': (__spec__.parent, '.errors'),
|
||||
'PydanticSchemaGenerationError': (__spec__.parent, '.errors'),
|
||||
'PydanticImportError': (__spec__.parent, '.errors'),
|
||||
'PydanticUndefinedAnnotation': (__spec__.parent, '.errors'),
|
||||
'PydanticInvalidForJsonSchema': (__spec__.parent, '.errors'),
|
||||
'PydanticForbiddenQualifier': (__spec__.parent, '.errors'),
|
||||
# fields
|
||||
'Field': (__spec__.parent, '.fields'),
|
||||
'computed_field': (__spec__.parent, '.fields'),
|
||||
'PrivateAttr': (__spec__.parent, '.fields'),
|
||||
# alias
|
||||
'AliasChoices': (__spec__.parent, '.aliases'),
|
||||
'AliasGenerator': (__spec__.parent, '.aliases'),
|
||||
'AliasPath': (__spec__.parent, '.aliases'),
|
||||
# main
|
||||
'BaseModel': (__spec__.parent, '.main'),
|
||||
'create_model': (__spec__.parent, '.main'),
|
||||
# network
|
||||
'AnyUrl': (__spec__.parent, '.networks'),
|
||||
'AnyHttpUrl': (__spec__.parent, '.networks'),
|
||||
'FileUrl': (__spec__.parent, '.networks'),
|
||||
'HttpUrl': (__spec__.parent, '.networks'),
|
||||
'FtpUrl': (__spec__.parent, '.networks'),
|
||||
'WebsocketUrl': (__spec__.parent, '.networks'),
|
||||
'AnyWebsocketUrl': (__spec__.parent, '.networks'),
|
||||
'UrlConstraints': (__spec__.parent, '.networks'),
|
||||
'EmailStr': (__spec__.parent, '.networks'),
|
||||
'NameEmail': (__spec__.parent, '.networks'),
|
||||
'IPvAnyAddress': (__spec__.parent, '.networks'),
|
||||
'IPvAnyInterface': (__spec__.parent, '.networks'),
|
||||
'IPvAnyNetwork': (__spec__.parent, '.networks'),
|
||||
'PostgresDsn': (__spec__.parent, '.networks'),
|
||||
'CockroachDsn': (__spec__.parent, '.networks'),
|
||||
'AmqpDsn': (__spec__.parent, '.networks'),
|
||||
'RedisDsn': (__spec__.parent, '.networks'),
|
||||
'MongoDsn': (__spec__.parent, '.networks'),
|
||||
'KafkaDsn': (__spec__.parent, '.networks'),
|
||||
'NatsDsn': (__spec__.parent, '.networks'),
|
||||
'MySQLDsn': (__spec__.parent, '.networks'),
|
||||
'MariaDBDsn': (__spec__.parent, '.networks'),
|
||||
'ClickHouseDsn': (__spec__.parent, '.networks'),
|
||||
'SnowflakeDsn': (__spec__.parent, '.networks'),
|
||||
'validate_email': (__spec__.parent, '.networks'),
|
||||
# root_model
|
||||
'RootModel': (__spec__.parent, '.root_model'),
|
||||
# types
|
||||
'Strict': (__spec__.parent, '.types'),
|
||||
'StrictStr': (__spec__.parent, '.types'),
|
||||
'conbytes': (__spec__.parent, '.types'),
|
||||
'conlist': (__spec__.parent, '.types'),
|
||||
'conset': (__spec__.parent, '.types'),
|
||||
'confrozenset': (__spec__.parent, '.types'),
|
||||
'constr': (__spec__.parent, '.types'),
|
||||
'StringConstraints': (__spec__.parent, '.types'),
|
||||
'ImportString': (__spec__.parent, '.types'),
|
||||
'conint': (__spec__.parent, '.types'),
|
||||
'PositiveInt': (__spec__.parent, '.types'),
|
||||
'NegativeInt': (__spec__.parent, '.types'),
|
||||
'NonNegativeInt': (__spec__.parent, '.types'),
|
||||
'NonPositiveInt': (__spec__.parent, '.types'),
|
||||
'confloat': (__spec__.parent, '.types'),
|
||||
'PositiveFloat': (__spec__.parent, '.types'),
|
||||
'NegativeFloat': (__spec__.parent, '.types'),
|
||||
'NonNegativeFloat': (__spec__.parent, '.types'),
|
||||
'NonPositiveFloat': (__spec__.parent, '.types'),
|
||||
'FiniteFloat': (__spec__.parent, '.types'),
|
||||
'condecimal': (__spec__.parent, '.types'),
|
||||
'condate': (__spec__.parent, '.types'),
|
||||
'UUID1': (__spec__.parent, '.types'),
|
||||
'UUID3': (__spec__.parent, '.types'),
|
||||
'UUID4': (__spec__.parent, '.types'),
|
||||
'UUID5': (__spec__.parent, '.types'),
|
||||
'UUID6': (__spec__.parent, '.types'),
|
||||
'UUID7': (__spec__.parent, '.types'),
|
||||
'UUID8': (__spec__.parent, '.types'),
|
||||
'FilePath': (__spec__.parent, '.types'),
|
||||
'DirectoryPath': (__spec__.parent, '.types'),
|
||||
'NewPath': (__spec__.parent, '.types'),
|
||||
'Json': (__spec__.parent, '.types'),
|
||||
'Secret': (__spec__.parent, '.types'),
|
||||
'SecretStr': (__spec__.parent, '.types'),
|
||||
'SecretBytes': (__spec__.parent, '.types'),
|
||||
'StrictBool': (__spec__.parent, '.types'),
|
||||
'StrictBytes': (__spec__.parent, '.types'),
|
||||
'StrictInt': (__spec__.parent, '.types'),
|
||||
'StrictFloat': (__spec__.parent, '.types'),
|
||||
'PaymentCardNumber': (__spec__.parent, '.types'),
|
||||
'ByteSize': (__spec__.parent, '.types'),
|
||||
'PastDate': (__spec__.parent, '.types'),
|
||||
'SocketPath': (__spec__.parent, '.types'),
|
||||
'FutureDate': (__spec__.parent, '.types'),
|
||||
'PastDatetime': (__spec__.parent, '.types'),
|
||||
'FutureDatetime': (__spec__.parent, '.types'),
|
||||
'AwareDatetime': (__spec__.parent, '.types'),
|
||||
'NaiveDatetime': (__spec__.parent, '.types'),
|
||||
'AllowInfNan': (__spec__.parent, '.types'),
|
||||
'EncoderProtocol': (__spec__.parent, '.types'),
|
||||
'EncodedBytes': (__spec__.parent, '.types'),
|
||||
'EncodedStr': (__spec__.parent, '.types'),
|
||||
'Base64Encoder': (__spec__.parent, '.types'),
|
||||
'Base64Bytes': (__spec__.parent, '.types'),
|
||||
'Base64Str': (__spec__.parent, '.types'),
|
||||
'Base64UrlBytes': (__spec__.parent, '.types'),
|
||||
'Base64UrlStr': (__spec__.parent, '.types'),
|
||||
'GetPydanticSchema': (__spec__.parent, '.types'),
|
||||
'Tag': (__spec__.parent, '.types'),
|
||||
'Discriminator': (__spec__.parent, '.types'),
|
||||
'JsonValue': (__spec__.parent, '.types'),
|
||||
'OnErrorOmit': (__spec__.parent, '.types'),
|
||||
'FailFast': (__spec__.parent, '.types'),
|
||||
# type_adapter
|
||||
'TypeAdapter': (__spec__.parent, '.type_adapter'),
|
||||
# warnings
|
||||
'PydanticDeprecatedSince20': (__spec__.parent, '.warnings'),
|
||||
'PydanticDeprecatedSince26': (__spec__.parent, '.warnings'),
|
||||
'PydanticDeprecatedSince29': (__spec__.parent, '.warnings'),
|
||||
'PydanticDeprecatedSince210': (__spec__.parent, '.warnings'),
|
||||
'PydanticDeprecatedSince211': (__spec__.parent, '.warnings'),
|
||||
'PydanticDeprecationWarning': (__spec__.parent, '.warnings'),
|
||||
'PydanticExperimentalWarning': (__spec__.parent, '.warnings'),
|
||||
# annotated handlers
|
||||
'GetCoreSchemaHandler': (__spec__.parent, '.annotated_handlers'),
|
||||
'GetJsonSchemaHandler': (__spec__.parent, '.annotated_handlers'),
|
||||
# pydantic_core stuff
|
||||
'ValidationError': ('pydantic_core', '.'),
|
||||
'ValidationInfo': ('pydantic_core', '.core_schema'),
|
||||
'SerializationInfo': ('pydantic_core', '.core_schema'),
|
||||
'ValidatorFunctionWrapHandler': ('pydantic_core', '.core_schema'),
|
||||
'FieldSerializationInfo': ('pydantic_core', '.core_schema'),
|
||||
'SerializerFunctionWrapHandler': ('pydantic_core', '.core_schema'),
|
||||
# deprecated, mostly not included in __all__
|
||||
'root_validator': (__spec__.parent, '.deprecated.class_validators'),
|
||||
'validator': (__spec__.parent, '.deprecated.class_validators'),
|
||||
'BaseConfig': (__spec__.parent, '.deprecated.config'),
|
||||
'Extra': (__spec__.parent, '.deprecated.config'),
|
||||
'parse_obj_as': (__spec__.parent, '.deprecated.tools'),
|
||||
'schema_of': (__spec__.parent, '.deprecated.tools'),
|
||||
'schema_json_of': (__spec__.parent, '.deprecated.tools'),
|
||||
# deprecated dynamic imports
|
||||
'FieldValidationInfo': ('pydantic_core', '.core_schema'),
|
||||
'GenerateSchema': (__spec__.parent, '._internal._generate_schema'),
|
||||
}
|
||||
_deprecated_dynamic_imports = {'FieldValidationInfo', 'GenerateSchema'}
|
||||
|
||||
_getattr_migration = getattr_migration(__name__)
|
||||
|
||||
|
||||
def __getattr__(attr_name: str) -> object:
|
||||
if attr_name in _deprecated_dynamic_imports:
|
||||
warn(
|
||||
f'Importing {attr_name} from `pydantic` is deprecated. This feature is either no longer supported, or is not public.',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
dynamic_attr = _dynamic_imports.get(attr_name)
|
||||
if dynamic_attr is None:
|
||||
return _getattr_migration(attr_name)
|
||||
|
||||
package, module_name = dynamic_attr
|
||||
|
||||
if module_name == '__module__':
|
||||
result = import_module(f'.{attr_name}', package=package)
|
||||
globals()[attr_name] = result
|
||||
return result
|
||||
else:
|
||||
module = import_module(module_name, package=package)
|
||||
result = getattr(module, attr_name)
|
||||
g = globals()
|
||||
for k, (_, v_module_name) in _dynamic_imports.items():
|
||||
if v_module_name == module_name and k not in _deprecated_dynamic_imports:
|
||||
g[k] = getattr(module, k)
|
||||
return result
|
||||
|
||||
|
||||
def __dir__() -> 'list[str]':
|
||||
return list(__all__)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
373
venv/lib/python3.11/site-packages/pydantic/_internal/_config.py
Normal file
373
venv/lib/python3.11/site-packages/pydantic/_internal/_config.py
Normal file
@ -0,0 +1,373 @@
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from re import Pattern
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Callable,
|
||||
Literal,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pydantic_core import core_schema
|
||||
from typing_extensions import Self
|
||||
|
||||
from ..aliases import AliasGenerator
|
||||
from ..config import ConfigDict, ExtraValues, JsonDict, JsonEncoder, JsonSchemaExtraCallable
|
||||
from ..errors import PydanticUserError
|
||||
from ..warnings import PydanticDeprecatedSince20, PydanticDeprecatedSince210
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .._internal._schema_generation_shared import GenerateSchema
|
||||
from ..fields import ComputedFieldInfo, FieldInfo
|
||||
|
||||
DEPRECATION_MESSAGE = 'Support for class-based `config` is deprecated, use ConfigDict instead.'
|
||||
|
||||
|
||||
class ConfigWrapper:
|
||||
"""Internal wrapper for Config which exposes ConfigDict items as attributes."""
|
||||
|
||||
__slots__ = ('config_dict',)
|
||||
|
||||
config_dict: ConfigDict
|
||||
|
||||
# all annotations are copied directly from ConfigDict, and should be kept up to date, a test will fail if they
|
||||
# stop matching
|
||||
title: str | None
|
||||
str_to_lower: bool
|
||||
str_to_upper: bool
|
||||
str_strip_whitespace: bool
|
||||
str_min_length: int
|
||||
str_max_length: int | None
|
||||
extra: ExtraValues | None
|
||||
frozen: bool
|
||||
populate_by_name: bool
|
||||
use_enum_values: bool
|
||||
validate_assignment: bool
|
||||
arbitrary_types_allowed: bool
|
||||
from_attributes: bool
|
||||
# whether to use the actual key provided in the data (e.g. alias or first alias for "field required" errors) instead of field_names
|
||||
# to construct error `loc`s, default `True`
|
||||
loc_by_alias: bool
|
||||
alias_generator: Callable[[str], str] | AliasGenerator | None
|
||||
model_title_generator: Callable[[type], str] | None
|
||||
field_title_generator: Callable[[str, FieldInfo | ComputedFieldInfo], str] | None
|
||||
ignored_types: tuple[type, ...]
|
||||
allow_inf_nan: bool
|
||||
json_schema_extra: JsonDict | JsonSchemaExtraCallable | None
|
||||
json_encoders: dict[type[object], JsonEncoder] | None
|
||||
|
||||
# new in V2
|
||||
strict: bool
|
||||
# whether instances of models and dataclasses (including subclass instances) should re-validate, default 'never'
|
||||
revalidate_instances: Literal['always', 'never', 'subclass-instances']
|
||||
ser_json_timedelta: Literal['iso8601', 'float']
|
||||
ser_json_bytes: Literal['utf8', 'base64', 'hex']
|
||||
val_json_bytes: Literal['utf8', 'base64', 'hex']
|
||||
ser_json_inf_nan: Literal['null', 'constants', 'strings']
|
||||
# whether to validate default values during validation, default False
|
||||
validate_default: bool
|
||||
validate_return: bool
|
||||
protected_namespaces: tuple[str | Pattern[str], ...]
|
||||
hide_input_in_errors: bool
|
||||
defer_build: bool
|
||||
plugin_settings: dict[str, object] | None
|
||||
schema_generator: type[GenerateSchema] | None
|
||||
json_schema_serialization_defaults_required: bool
|
||||
json_schema_mode_override: Literal['validation', 'serialization', None]
|
||||
coerce_numbers_to_str: bool
|
||||
regex_engine: Literal['rust-regex', 'python-re']
|
||||
validation_error_cause: bool
|
||||
use_attribute_docstrings: bool
|
||||
cache_strings: bool | Literal['all', 'keys', 'none']
|
||||
validate_by_alias: bool
|
||||
validate_by_name: bool
|
||||
serialize_by_alias: bool
|
||||
|
||||
def __init__(self, config: ConfigDict | dict[str, Any] | type[Any] | None, *, check: bool = True):
|
||||
if check:
|
||||
self.config_dict = prepare_config(config)
|
||||
else:
|
||||
self.config_dict = cast(ConfigDict, config)
|
||||
|
||||
@classmethod
|
||||
def for_model(cls, bases: tuple[type[Any], ...], namespace: dict[str, Any], kwargs: dict[str, Any]) -> Self:
|
||||
"""Build a new `ConfigWrapper` instance for a `BaseModel`.
|
||||
|
||||
The config wrapper built based on (in descending order of priority):
|
||||
- options from `kwargs`
|
||||
- options from the `namespace`
|
||||
- options from the base classes (`bases`)
|
||||
|
||||
Args:
|
||||
bases: A tuple of base classes.
|
||||
namespace: The namespace of the class being created.
|
||||
kwargs: The kwargs passed to the class being created.
|
||||
|
||||
Returns:
|
||||
A `ConfigWrapper` instance for `BaseModel`.
|
||||
"""
|
||||
config_new = ConfigDict()
|
||||
for base in bases:
|
||||
config = getattr(base, 'model_config', None)
|
||||
if config:
|
||||
config_new.update(config.copy())
|
||||
|
||||
config_class_from_namespace = namespace.get('Config')
|
||||
config_dict_from_namespace = namespace.get('model_config')
|
||||
|
||||
raw_annotations = namespace.get('__annotations__', {})
|
||||
if raw_annotations.get('model_config') and config_dict_from_namespace is None:
|
||||
raise PydanticUserError(
|
||||
'`model_config` cannot be used as a model field name. Use `model_config` for model configuration.',
|
||||
code='model-config-invalid-field-name',
|
||||
)
|
||||
|
||||
if config_class_from_namespace and config_dict_from_namespace:
|
||||
raise PydanticUserError('"Config" and "model_config" cannot be used together', code='config-both')
|
||||
|
||||
config_from_namespace = config_dict_from_namespace or prepare_config(config_class_from_namespace)
|
||||
|
||||
config_new.update(config_from_namespace)
|
||||
|
||||
for k in list(kwargs.keys()):
|
||||
if k in config_keys:
|
||||
config_new[k] = kwargs.pop(k)
|
||||
|
||||
return cls(config_new)
|
||||
|
||||
# we don't show `__getattr__` to type checkers so missing attributes cause errors
|
||||
if not TYPE_CHECKING: # pragma: no branch
|
||||
|
||||
def __getattr__(self, name: str) -> Any:
|
||||
try:
|
||||
return self.config_dict[name]
|
||||
except KeyError:
|
||||
try:
|
||||
return config_defaults[name]
|
||||
except KeyError:
|
||||
raise AttributeError(f'Config has no attribute {name!r}') from None
|
||||
|
||||
def core_config(self, title: str | None) -> core_schema.CoreConfig:
|
||||
"""Create a pydantic-core config.
|
||||
|
||||
We don't use getattr here since we don't want to populate with defaults.
|
||||
|
||||
Args:
|
||||
title: The title to use if not set in config.
|
||||
|
||||
Returns:
|
||||
A `CoreConfig` object created from config.
|
||||
"""
|
||||
config = self.config_dict
|
||||
|
||||
if config.get('schema_generator') is not None:
|
||||
warnings.warn(
|
||||
'The `schema_generator` setting has been deprecated since v2.10. This setting no longer has any effect.',
|
||||
PydanticDeprecatedSince210,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
if (populate_by_name := config.get('populate_by_name')) is not None:
|
||||
# We include this patch for backwards compatibility purposes, but this config setting will be deprecated in v3.0, and likely removed in v4.0.
|
||||
# Thus, the above warning and this patch can be removed then as well.
|
||||
if config.get('validate_by_name') is None:
|
||||
config['validate_by_alias'] = True
|
||||
config['validate_by_name'] = populate_by_name
|
||||
|
||||
# We dynamically patch validate_by_name to be True if validate_by_alias is set to False
|
||||
# and validate_by_name is not explicitly set.
|
||||
if config.get('validate_by_alias') is False and config.get('validate_by_name') is None:
|
||||
config['validate_by_name'] = True
|
||||
|
||||
if (not config.get('validate_by_alias', True)) and (not config.get('validate_by_name', False)):
|
||||
raise PydanticUserError(
|
||||
'At least one of `validate_by_alias` or `validate_by_name` must be set to True.',
|
||||
code='validate-by-alias-and-name-false',
|
||||
)
|
||||
|
||||
return core_schema.CoreConfig(
|
||||
**{ # pyright: ignore[reportArgumentType]
|
||||
k: v
|
||||
for k, v in (
|
||||
('title', config.get('title') or title or None),
|
||||
('extra_fields_behavior', config.get('extra')),
|
||||
('allow_inf_nan', config.get('allow_inf_nan')),
|
||||
('str_strip_whitespace', config.get('str_strip_whitespace')),
|
||||
('str_to_lower', config.get('str_to_lower')),
|
||||
('str_to_upper', config.get('str_to_upper')),
|
||||
('strict', config.get('strict')),
|
||||
('ser_json_timedelta', config.get('ser_json_timedelta')),
|
||||
('ser_json_bytes', config.get('ser_json_bytes')),
|
||||
('val_json_bytes', config.get('val_json_bytes')),
|
||||
('ser_json_inf_nan', config.get('ser_json_inf_nan')),
|
||||
('from_attributes', config.get('from_attributes')),
|
||||
('loc_by_alias', config.get('loc_by_alias')),
|
||||
('revalidate_instances', config.get('revalidate_instances')),
|
||||
('validate_default', config.get('validate_default')),
|
||||
('str_max_length', config.get('str_max_length')),
|
||||
('str_min_length', config.get('str_min_length')),
|
||||
('hide_input_in_errors', config.get('hide_input_in_errors')),
|
||||
('coerce_numbers_to_str', config.get('coerce_numbers_to_str')),
|
||||
('regex_engine', config.get('regex_engine')),
|
||||
('validation_error_cause', config.get('validation_error_cause')),
|
||||
('cache_strings', config.get('cache_strings')),
|
||||
('validate_by_alias', config.get('validate_by_alias')),
|
||||
('validate_by_name', config.get('validate_by_name')),
|
||||
('serialize_by_alias', config.get('serialize_by_alias')),
|
||||
)
|
||||
if v is not None
|
||||
}
|
||||
)
|
||||
|
||||
def __repr__(self):
|
||||
c = ', '.join(f'{k}={v!r}' for k, v in self.config_dict.items())
|
||||
return f'ConfigWrapper({c})'
|
||||
|
||||
|
||||
class ConfigWrapperStack:
|
||||
"""A stack of `ConfigWrapper` instances."""
|
||||
|
||||
def __init__(self, config_wrapper: ConfigWrapper):
|
||||
self._config_wrapper_stack: list[ConfigWrapper] = [config_wrapper]
|
||||
|
||||
@property
|
||||
def tail(self) -> ConfigWrapper:
|
||||
return self._config_wrapper_stack[-1]
|
||||
|
||||
@contextmanager
|
||||
def push(self, config_wrapper: ConfigWrapper | ConfigDict | None):
|
||||
if config_wrapper is None:
|
||||
yield
|
||||
return
|
||||
|
||||
if not isinstance(config_wrapper, ConfigWrapper):
|
||||
config_wrapper = ConfigWrapper(config_wrapper, check=False)
|
||||
|
||||
self._config_wrapper_stack.append(config_wrapper)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
self._config_wrapper_stack.pop()
|
||||
|
||||
|
||||
config_defaults = ConfigDict(
|
||||
title=None,
|
||||
str_to_lower=False,
|
||||
str_to_upper=False,
|
||||
str_strip_whitespace=False,
|
||||
str_min_length=0,
|
||||
str_max_length=None,
|
||||
# let the model / dataclass decide how to handle it
|
||||
extra=None,
|
||||
frozen=False,
|
||||
populate_by_name=False,
|
||||
use_enum_values=False,
|
||||
validate_assignment=False,
|
||||
arbitrary_types_allowed=False,
|
||||
from_attributes=False,
|
||||
loc_by_alias=True,
|
||||
alias_generator=None,
|
||||
model_title_generator=None,
|
||||
field_title_generator=None,
|
||||
ignored_types=(),
|
||||
allow_inf_nan=True,
|
||||
json_schema_extra=None,
|
||||
strict=False,
|
||||
revalidate_instances='never',
|
||||
ser_json_timedelta='iso8601',
|
||||
ser_json_bytes='utf8',
|
||||
val_json_bytes='utf8',
|
||||
ser_json_inf_nan='null',
|
||||
validate_default=False,
|
||||
validate_return=False,
|
||||
protected_namespaces=('model_validate', 'model_dump'),
|
||||
hide_input_in_errors=False,
|
||||
json_encoders=None,
|
||||
defer_build=False,
|
||||
schema_generator=None,
|
||||
plugin_settings=None,
|
||||
json_schema_serialization_defaults_required=False,
|
||||
json_schema_mode_override=None,
|
||||
coerce_numbers_to_str=False,
|
||||
regex_engine='rust-regex',
|
||||
validation_error_cause=False,
|
||||
use_attribute_docstrings=False,
|
||||
cache_strings=True,
|
||||
validate_by_alias=True,
|
||||
validate_by_name=False,
|
||||
serialize_by_alias=False,
|
||||
)
|
||||
|
||||
|
||||
def prepare_config(config: ConfigDict | dict[str, Any] | type[Any] | None) -> ConfigDict:
|
||||
"""Create a `ConfigDict` instance from an existing dict, a class (e.g. old class-based config) or None.
|
||||
|
||||
Args:
|
||||
config: The input config.
|
||||
|
||||
Returns:
|
||||
A ConfigDict object created from config.
|
||||
"""
|
||||
if config is None:
|
||||
return ConfigDict()
|
||||
|
||||
if not isinstance(config, dict):
|
||||
warnings.warn(DEPRECATION_MESSAGE, DeprecationWarning)
|
||||
config = {k: getattr(config, k) for k in dir(config) if not k.startswith('__')}
|
||||
|
||||
config_dict = cast(ConfigDict, config)
|
||||
check_deprecated(config_dict)
|
||||
return config_dict
|
||||
|
||||
|
||||
config_keys = set(ConfigDict.__annotations__.keys())
|
||||
|
||||
|
||||
V2_REMOVED_KEYS = {
|
||||
'allow_mutation',
|
||||
'error_msg_templates',
|
||||
'fields',
|
||||
'getter_dict',
|
||||
'smart_union',
|
||||
'underscore_attrs_are_private',
|
||||
'json_loads',
|
||||
'json_dumps',
|
||||
'copy_on_model_validation',
|
||||
'post_init_call',
|
||||
}
|
||||
V2_RENAMED_KEYS = {
|
||||
'allow_population_by_field_name': 'validate_by_name',
|
||||
'anystr_lower': 'str_to_lower',
|
||||
'anystr_strip_whitespace': 'str_strip_whitespace',
|
||||
'anystr_upper': 'str_to_upper',
|
||||
'keep_untouched': 'ignored_types',
|
||||
'max_anystr_length': 'str_max_length',
|
||||
'min_anystr_length': 'str_min_length',
|
||||
'orm_mode': 'from_attributes',
|
||||
'schema_extra': 'json_schema_extra',
|
||||
'validate_all': 'validate_default',
|
||||
}
|
||||
|
||||
|
||||
def check_deprecated(config_dict: ConfigDict) -> None:
|
||||
"""Check for deprecated config keys and warn the user.
|
||||
|
||||
Args:
|
||||
config_dict: The input config.
|
||||
"""
|
||||
deprecated_removed_keys = V2_REMOVED_KEYS & config_dict.keys()
|
||||
deprecated_renamed_keys = V2_RENAMED_KEYS.keys() & config_dict.keys()
|
||||
if deprecated_removed_keys or deprecated_renamed_keys:
|
||||
renamings = {k: V2_RENAMED_KEYS[k] for k in sorted(deprecated_renamed_keys)}
|
||||
renamed_bullets = [f'* {k!r} has been renamed to {v!r}' for k, v in renamings.items()]
|
||||
removed_bullets = [f'* {k!r} has been removed' for k in sorted(deprecated_removed_keys)]
|
||||
message = '\n'.join(['Valid config keys have changed in V2:'] + renamed_bullets + removed_bullets)
|
||||
warnings.warn(message, UserWarning)
|
@ -0,0 +1,97 @@
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any, TypedDict, cast
|
||||
from warnings import warn
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..config import JsonDict, JsonSchemaExtraCallable
|
||||
from ._schema_generation_shared import (
|
||||
GetJsonSchemaFunction,
|
||||
)
|
||||
|
||||
|
||||
class CoreMetadata(TypedDict, total=False):
|
||||
"""A `TypedDict` for holding the metadata dict of the schema.
|
||||
|
||||
Attributes:
|
||||
pydantic_js_functions: List of JSON schema functions that resolve refs during application.
|
||||
pydantic_js_annotation_functions: List of JSON schema functions that don't resolve refs during application.
|
||||
pydantic_js_prefer_positional_arguments: Whether JSON schema generator will
|
||||
prefer positional over keyword arguments for an 'arguments' schema.
|
||||
custom validation function. Only applies to before, plain, and wrap validators.
|
||||
pydantic_js_updates: key / value pair updates to apply to the JSON schema for a type.
|
||||
pydantic_js_extra: WIP, either key/value pair updates to apply to the JSON schema, or a custom callable.
|
||||
pydantic_internal_union_tag_key: Used internally by the `Tag` metadata to specify the tag used for a discriminated union.
|
||||
pydantic_internal_union_discriminator: Used internally to specify the discriminator value for a discriminated union
|
||||
when the discriminator was applied to a `'definition-ref'` schema, and that reference was missing at the time
|
||||
of the annotation application.
|
||||
|
||||
TODO: Perhaps we should move this structure to pydantic-core. At the moment, though,
|
||||
it's easier to iterate on if we leave it in pydantic until we feel there is a semi-stable API.
|
||||
|
||||
TODO: It's unfortunate how functionally oriented JSON schema generation is, especially that which occurs during
|
||||
the core schema generation process. It's inevitable that we need to store some json schema related information
|
||||
on core schemas, given that we generate JSON schemas directly from core schemas. That being said, debugging related
|
||||
issues is quite difficult when JSON schema information is disguised via dynamically defined functions.
|
||||
"""
|
||||
|
||||
pydantic_js_functions: list[GetJsonSchemaFunction]
|
||||
pydantic_js_annotation_functions: list[GetJsonSchemaFunction]
|
||||
pydantic_js_prefer_positional_arguments: bool
|
||||
pydantic_js_updates: JsonDict
|
||||
pydantic_js_extra: JsonDict | JsonSchemaExtraCallable
|
||||
pydantic_internal_union_tag_key: str
|
||||
pydantic_internal_union_discriminator: str
|
||||
|
||||
|
||||
def update_core_metadata(
|
||||
core_metadata: Any,
|
||||
/,
|
||||
*,
|
||||
pydantic_js_functions: list[GetJsonSchemaFunction] | None = None,
|
||||
pydantic_js_annotation_functions: list[GetJsonSchemaFunction] | None = None,
|
||||
pydantic_js_updates: JsonDict | None = None,
|
||||
pydantic_js_extra: JsonDict | JsonSchemaExtraCallable | None = None,
|
||||
) -> None:
|
||||
from ..json_schema import PydanticJsonSchemaWarning
|
||||
|
||||
"""Update CoreMetadata instance in place. When we make modifications in this function, they
|
||||
take effect on the `core_metadata` reference passed in as the first (and only) positional argument.
|
||||
|
||||
First, cast to `CoreMetadata`, then finish with a cast to `dict[str, Any]` for core schema compatibility.
|
||||
We do this here, instead of before / after each call to this function so that this typing hack
|
||||
can be easily removed if/when we move `CoreMetadata` to `pydantic-core`.
|
||||
|
||||
For parameter descriptions, see `CoreMetadata` above.
|
||||
"""
|
||||
core_metadata = cast(CoreMetadata, core_metadata)
|
||||
|
||||
if pydantic_js_functions:
|
||||
core_metadata.setdefault('pydantic_js_functions', []).extend(pydantic_js_functions)
|
||||
|
||||
if pydantic_js_annotation_functions:
|
||||
core_metadata.setdefault('pydantic_js_annotation_functions', []).extend(pydantic_js_annotation_functions)
|
||||
|
||||
if pydantic_js_updates:
|
||||
if (existing_updates := core_metadata.get('pydantic_js_updates')) is not None:
|
||||
core_metadata['pydantic_js_updates'] = {**existing_updates, **pydantic_js_updates}
|
||||
else:
|
||||
core_metadata['pydantic_js_updates'] = pydantic_js_updates
|
||||
|
||||
if pydantic_js_extra is not None:
|
||||
existing_pydantic_js_extra = core_metadata.get('pydantic_js_extra')
|
||||
if existing_pydantic_js_extra is None:
|
||||
core_metadata['pydantic_js_extra'] = pydantic_js_extra
|
||||
if isinstance(existing_pydantic_js_extra, dict):
|
||||
if isinstance(pydantic_js_extra, dict):
|
||||
core_metadata['pydantic_js_extra'] = {**existing_pydantic_js_extra, **pydantic_js_extra}
|
||||
if callable(pydantic_js_extra):
|
||||
warn(
|
||||
'Composing `dict` and `callable` type `json_schema_extra` is not supported.'
|
||||
'The `callable` type is being ignored.'
|
||||
"If you'd like support for this behavior, please open an issue on pydantic.",
|
||||
PydanticJsonSchemaWarning,
|
||||
)
|
||||
if callable(existing_pydantic_js_extra):
|
||||
# if ever there's a case of a callable, we'll just keep the last json schema extra spec
|
||||
core_metadata['pydantic_js_extra'] = pydantic_js_extra
|
@ -0,0 +1,182 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import inspect
|
||||
import os
|
||||
from collections.abc import Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any, Union
|
||||
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
from pydantic_core import validate_core_schema as _validate_core_schema
|
||||
from typing_extensions import TypeGuard, get_args, get_origin
|
||||
from typing_inspection import typing_objects
|
||||
|
||||
from . import _repr
|
||||
from ._typing_extra import is_generic_alias
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from rich.console import Console
|
||||
|
||||
AnyFunctionSchema = Union[
|
||||
core_schema.AfterValidatorFunctionSchema,
|
||||
core_schema.BeforeValidatorFunctionSchema,
|
||||
core_schema.WrapValidatorFunctionSchema,
|
||||
core_schema.PlainValidatorFunctionSchema,
|
||||
]
|
||||
|
||||
|
||||
FunctionSchemaWithInnerSchema = Union[
|
||||
core_schema.AfterValidatorFunctionSchema,
|
||||
core_schema.BeforeValidatorFunctionSchema,
|
||||
core_schema.WrapValidatorFunctionSchema,
|
||||
]
|
||||
|
||||
CoreSchemaField = Union[
|
||||
core_schema.ModelField, core_schema.DataclassField, core_schema.TypedDictField, core_schema.ComputedField
|
||||
]
|
||||
CoreSchemaOrField = Union[core_schema.CoreSchema, CoreSchemaField]
|
||||
|
||||
_CORE_SCHEMA_FIELD_TYPES = {'typed-dict-field', 'dataclass-field', 'model-field', 'computed-field'}
|
||||
_FUNCTION_WITH_INNER_SCHEMA_TYPES = {'function-before', 'function-after', 'function-wrap'}
|
||||
_LIST_LIKE_SCHEMA_WITH_ITEMS_TYPES = {'list', 'set', 'frozenset'}
|
||||
|
||||
|
||||
def is_core_schema(
|
||||
schema: CoreSchemaOrField,
|
||||
) -> TypeGuard[CoreSchema]:
|
||||
return schema['type'] not in _CORE_SCHEMA_FIELD_TYPES
|
||||
|
||||
|
||||
def is_core_schema_field(
|
||||
schema: CoreSchemaOrField,
|
||||
) -> TypeGuard[CoreSchemaField]:
|
||||
return schema['type'] in _CORE_SCHEMA_FIELD_TYPES
|
||||
|
||||
|
||||
def is_function_with_inner_schema(
|
||||
schema: CoreSchemaOrField,
|
||||
) -> TypeGuard[FunctionSchemaWithInnerSchema]:
|
||||
return schema['type'] in _FUNCTION_WITH_INNER_SCHEMA_TYPES
|
||||
|
||||
|
||||
def is_list_like_schema_with_items_schema(
|
||||
schema: CoreSchema,
|
||||
) -> TypeGuard[core_schema.ListSchema | core_schema.SetSchema | core_schema.FrozenSetSchema]:
|
||||
return schema['type'] in _LIST_LIKE_SCHEMA_WITH_ITEMS_TYPES
|
||||
|
||||
|
||||
def get_type_ref(type_: Any, args_override: tuple[type[Any], ...] | None = None) -> str:
|
||||
"""Produces the ref to be used for this type by pydantic_core's core schemas.
|
||||
|
||||
This `args_override` argument was added for the purpose of creating valid recursive references
|
||||
when creating generic models without needing to create a concrete class.
|
||||
"""
|
||||
origin = get_origin(type_) or type_
|
||||
|
||||
args = get_args(type_) if is_generic_alias(type_) else (args_override or ())
|
||||
generic_metadata = getattr(type_, '__pydantic_generic_metadata__', None)
|
||||
if generic_metadata:
|
||||
origin = generic_metadata['origin'] or origin
|
||||
args = generic_metadata['args'] or args
|
||||
|
||||
module_name = getattr(origin, '__module__', '<No __module__>')
|
||||
if typing_objects.is_typealiastype(origin):
|
||||
type_ref = f'{module_name}.{origin.__name__}:{id(origin)}'
|
||||
else:
|
||||
try:
|
||||
qualname = getattr(origin, '__qualname__', f'<No __qualname__: {origin}>')
|
||||
except Exception:
|
||||
qualname = getattr(origin, '__qualname__', '<No __qualname__>')
|
||||
type_ref = f'{module_name}.{qualname}:{id(origin)}'
|
||||
|
||||
arg_refs: list[str] = []
|
||||
for arg in args:
|
||||
if isinstance(arg, str):
|
||||
# Handle string literals as a special case; we may be able to remove this special handling if we
|
||||
# wrap them in a ForwardRef at some point.
|
||||
arg_ref = f'{arg}:str-{id(arg)}'
|
||||
else:
|
||||
arg_ref = f'{_repr.display_as_type(arg)}:{id(arg)}'
|
||||
arg_refs.append(arg_ref)
|
||||
if arg_refs:
|
||||
type_ref = f'{type_ref}[{",".join(arg_refs)}]'
|
||||
return type_ref
|
||||
|
||||
|
||||
def get_ref(s: core_schema.CoreSchema) -> None | str:
|
||||
"""Get the ref from the schema if it has one.
|
||||
This exists just for type checking to work correctly.
|
||||
"""
|
||||
return s.get('ref', None)
|
||||
|
||||
|
||||
def validate_core_schema(schema: CoreSchema) -> CoreSchema:
|
||||
if os.getenv('PYDANTIC_VALIDATE_CORE_SCHEMAS'):
|
||||
return _validate_core_schema(schema)
|
||||
return schema
|
||||
|
||||
|
||||
def _clean_schema_for_pretty_print(obj: Any, strip_metadata: bool = True) -> Any: # pragma: no cover
|
||||
"""A utility function to remove irrelevant information from a core schema."""
|
||||
if isinstance(obj, Mapping):
|
||||
new_dct = {}
|
||||
for k, v in obj.items():
|
||||
if k == 'metadata' and strip_metadata:
|
||||
new_metadata = {}
|
||||
|
||||
for meta_k, meta_v in v.items():
|
||||
if meta_k in ('pydantic_js_functions', 'pydantic_js_annotation_functions'):
|
||||
new_metadata['js_metadata'] = '<stripped>'
|
||||
else:
|
||||
new_metadata[meta_k] = _clean_schema_for_pretty_print(meta_v, strip_metadata=strip_metadata)
|
||||
|
||||
if list(new_metadata.keys()) == ['js_metadata']:
|
||||
new_metadata = {'<stripped>'}
|
||||
|
||||
new_dct[k] = new_metadata
|
||||
# Remove some defaults:
|
||||
elif k in ('custom_init', 'root_model') and not v:
|
||||
continue
|
||||
else:
|
||||
new_dct[k] = _clean_schema_for_pretty_print(v, strip_metadata=strip_metadata)
|
||||
|
||||
return new_dct
|
||||
elif isinstance(obj, Sequence) and not isinstance(obj, str):
|
||||
return [_clean_schema_for_pretty_print(v, strip_metadata=strip_metadata) for v in obj]
|
||||
else:
|
||||
return obj
|
||||
|
||||
|
||||
def pretty_print_core_schema(
|
||||
val: Any,
|
||||
*,
|
||||
console: Console | None = None,
|
||||
max_depth: int | None = None,
|
||||
strip_metadata: bool = True,
|
||||
) -> None: # pragma: no cover
|
||||
"""Pretty-print a core schema using the `rich` library.
|
||||
|
||||
Args:
|
||||
val: The core schema to print, or a Pydantic model/dataclass/type adapter
|
||||
(in which case the cached core schema is fetched and printed).
|
||||
console: A rich console to use when printing. Defaults to the global rich console instance.
|
||||
max_depth: The number of nesting levels which may be printed.
|
||||
strip_metadata: Whether to strip metadata in the output. If `True` any known core metadata
|
||||
attributes will be stripped (but custom attributes are kept). Defaults to `True`.
|
||||
"""
|
||||
# lazy import:
|
||||
from rich.pretty import pprint
|
||||
|
||||
# circ. imports:
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
from pydantic.dataclasses import is_pydantic_dataclass
|
||||
|
||||
if (inspect.isclass(val) and issubclass(val, BaseModel)) or is_pydantic_dataclass(val):
|
||||
val = val.__pydantic_core_schema__
|
||||
if isinstance(val, TypeAdapter):
|
||||
val = val.core_schema
|
||||
cleaned_schema = _clean_schema_for_pretty_print(val, strip_metadata=strip_metadata)
|
||||
|
||||
pprint(cleaned_schema, console=console, max_depth=max_depth)
|
||||
|
||||
|
||||
pps = pretty_print_core_schema
|
@ -0,0 +1,235 @@
|
||||
"""Private logic for creating pydantic dataclasses."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import dataclasses
|
||||
import typing
|
||||
import warnings
|
||||
from functools import partial, wraps
|
||||
from typing import Any, ClassVar
|
||||
|
||||
from pydantic_core import (
|
||||
ArgsKwargs,
|
||||
SchemaSerializer,
|
||||
SchemaValidator,
|
||||
core_schema,
|
||||
)
|
||||
from typing_extensions import TypeGuard
|
||||
|
||||
from ..errors import PydanticUndefinedAnnotation
|
||||
from ..plugin._schema_validator import PluggableSchemaValidator, create_schema_validator
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
from . import _config, _decorators
|
||||
from ._fields import collect_dataclass_fields
|
||||
from ._generate_schema import GenerateSchema, InvalidSchemaError
|
||||
from ._generics import get_standard_typevars_map
|
||||
from ._mock_val_ser import set_dataclass_mocks
|
||||
from ._namespace_utils import NsResolver
|
||||
from ._signature import generate_pydantic_signature
|
||||
from ._utils import LazyClassAttribute
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
from _typeshed import DataclassInstance as StandardDataclass
|
||||
|
||||
from ..config import ConfigDict
|
||||
from ..fields import FieldInfo
|
||||
|
||||
class PydanticDataclass(StandardDataclass, typing.Protocol):
|
||||
"""A protocol containing attributes only available once a class has been decorated as a Pydantic dataclass.
|
||||
|
||||
Attributes:
|
||||
__pydantic_config__: Pydantic-specific configuration settings for the dataclass.
|
||||
__pydantic_complete__: Whether dataclass building is completed, or if there are still undefined fields.
|
||||
__pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
|
||||
__pydantic_decorators__: Metadata containing the decorators defined on the dataclass.
|
||||
__pydantic_fields__: Metadata about the fields defined on the dataclass.
|
||||
__pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the dataclass.
|
||||
__pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the dataclass.
|
||||
"""
|
||||
|
||||
__pydantic_config__: ClassVar[ConfigDict]
|
||||
__pydantic_complete__: ClassVar[bool]
|
||||
__pydantic_core_schema__: ClassVar[core_schema.CoreSchema]
|
||||
__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos]
|
||||
__pydantic_fields__: ClassVar[dict[str, FieldInfo]]
|
||||
__pydantic_serializer__: ClassVar[SchemaSerializer]
|
||||
__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator]
|
||||
|
||||
else:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
|
||||
def set_dataclass_fields(
|
||||
cls: type[StandardDataclass],
|
||||
ns_resolver: NsResolver | None = None,
|
||||
config_wrapper: _config.ConfigWrapper | None = None,
|
||||
) -> None:
|
||||
"""Collect and set `cls.__pydantic_fields__`.
|
||||
|
||||
Args:
|
||||
cls: The class.
|
||||
ns_resolver: Namespace resolver to use when getting dataclass annotations.
|
||||
config_wrapper: The config wrapper instance, defaults to `None`.
|
||||
"""
|
||||
typevars_map = get_standard_typevars_map(cls)
|
||||
fields = collect_dataclass_fields(
|
||||
cls, ns_resolver=ns_resolver, typevars_map=typevars_map, config_wrapper=config_wrapper
|
||||
)
|
||||
|
||||
cls.__pydantic_fields__ = fields # type: ignore
|
||||
|
||||
|
||||
def complete_dataclass(
|
||||
cls: type[Any],
|
||||
config_wrapper: _config.ConfigWrapper,
|
||||
*,
|
||||
raise_errors: bool = True,
|
||||
ns_resolver: NsResolver | None = None,
|
||||
_force_build: bool = False,
|
||||
) -> bool:
|
||||
"""Finish building a pydantic dataclass.
|
||||
|
||||
This logic is called on a class which has already been wrapped in `dataclasses.dataclass()`.
|
||||
|
||||
This is somewhat analogous to `pydantic._internal._model_construction.complete_model_class`.
|
||||
|
||||
Args:
|
||||
cls: The class.
|
||||
config_wrapper: The config wrapper instance.
|
||||
raise_errors: Whether to raise errors, defaults to `True`.
|
||||
ns_resolver: The namespace resolver instance to use when collecting dataclass fields
|
||||
and during schema building.
|
||||
_force_build: Whether to force building the dataclass, no matter if
|
||||
[`defer_build`][pydantic.config.ConfigDict.defer_build] is set.
|
||||
|
||||
Returns:
|
||||
`True` if building a pydantic dataclass is successfully completed, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
PydanticUndefinedAnnotation: If `raise_error` is `True` and there is an undefined annotations.
|
||||
"""
|
||||
original_init = cls.__init__
|
||||
|
||||
# dataclass.__init__ must be defined here so its `__qualname__` can be changed since functions can't be copied,
|
||||
# and so that the mock validator is used if building was deferred:
|
||||
def __init__(__dataclass_self__: PydanticDataclass, *args: Any, **kwargs: Any) -> None:
|
||||
__tracebackhide__ = True
|
||||
s = __dataclass_self__
|
||||
s.__pydantic_validator__.validate_python(ArgsKwargs(args, kwargs), self_instance=s)
|
||||
|
||||
__init__.__qualname__ = f'{cls.__qualname__}.__init__'
|
||||
|
||||
cls.__init__ = __init__ # type: ignore
|
||||
cls.__pydantic_config__ = config_wrapper.config_dict # type: ignore
|
||||
|
||||
set_dataclass_fields(cls, ns_resolver, config_wrapper=config_wrapper)
|
||||
|
||||
if not _force_build and config_wrapper.defer_build:
|
||||
set_dataclass_mocks(cls)
|
||||
return False
|
||||
|
||||
if hasattr(cls, '__post_init_post_parse__'):
|
||||
warnings.warn(
|
||||
'Support for `__post_init_post_parse__` has been dropped, the method will not be called', DeprecationWarning
|
||||
)
|
||||
|
||||
typevars_map = get_standard_typevars_map(cls)
|
||||
gen_schema = GenerateSchema(
|
||||
config_wrapper,
|
||||
ns_resolver=ns_resolver,
|
||||
typevars_map=typevars_map,
|
||||
)
|
||||
|
||||
# set __signature__ attr only for the class, but not for its instances
|
||||
# (because instances can define `__call__`, and `inspect.signature` shouldn't
|
||||
# use the `__signature__` attribute and instead generate from `__call__`).
|
||||
cls.__signature__ = LazyClassAttribute(
|
||||
'__signature__',
|
||||
partial(
|
||||
generate_pydantic_signature,
|
||||
# It's important that we reference the `original_init` here,
|
||||
# as it is the one synthesized by the stdlib `dataclass` module:
|
||||
init=original_init,
|
||||
fields=cls.__pydantic_fields__, # type: ignore
|
||||
validate_by_name=config_wrapper.validate_by_name,
|
||||
extra=config_wrapper.extra,
|
||||
is_dataclass=True,
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
schema = gen_schema.generate_schema(cls)
|
||||
except PydanticUndefinedAnnotation as e:
|
||||
if raise_errors:
|
||||
raise
|
||||
set_dataclass_mocks(cls, f'`{e.name}`')
|
||||
return False
|
||||
|
||||
core_config = config_wrapper.core_config(title=cls.__name__)
|
||||
|
||||
try:
|
||||
schema = gen_schema.clean_schema(schema)
|
||||
except InvalidSchemaError:
|
||||
set_dataclass_mocks(cls)
|
||||
return False
|
||||
|
||||
# We are about to set all the remaining required properties expected for this cast;
|
||||
# __pydantic_decorators__ and __pydantic_fields__ should already be set
|
||||
cls = typing.cast('type[PydanticDataclass]', cls)
|
||||
# debug(schema)
|
||||
|
||||
cls.__pydantic_core_schema__ = schema
|
||||
cls.__pydantic_validator__ = validator = create_schema_validator(
|
||||
schema, cls, cls.__module__, cls.__qualname__, 'dataclass', core_config, config_wrapper.plugin_settings
|
||||
)
|
||||
cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config)
|
||||
|
||||
if config_wrapper.validate_assignment:
|
||||
|
||||
@wraps(cls.__setattr__)
|
||||
def validated_setattr(instance: Any, field: str, value: str, /) -> None:
|
||||
validator.validate_assignment(instance, field, value)
|
||||
|
||||
cls.__setattr__ = validated_setattr.__get__(None, cls) # type: ignore
|
||||
|
||||
cls.__pydantic_complete__ = True
|
||||
return True
|
||||
|
||||
|
||||
def is_builtin_dataclass(_cls: type[Any]) -> TypeGuard[type[StandardDataclass]]:
|
||||
"""Returns True if a class is a stdlib dataclass and *not* a pydantic dataclass.
|
||||
|
||||
We check that
|
||||
- `_cls` is a dataclass
|
||||
- `_cls` does not inherit from a processed pydantic dataclass (and thus have a `__pydantic_validator__`)
|
||||
- `_cls` does not have any annotations that are not dataclass fields
|
||||
e.g.
|
||||
```python
|
||||
import dataclasses
|
||||
|
||||
import pydantic.dataclasses
|
||||
|
||||
@dataclasses.dataclass
|
||||
class A:
|
||||
x: int
|
||||
|
||||
@pydantic.dataclasses.dataclass
|
||||
class B(A):
|
||||
y: int
|
||||
```
|
||||
In this case, when we first check `B`, we make an extra check and look at the annotations ('y'),
|
||||
which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x')
|
||||
|
||||
Args:
|
||||
cls: The class.
|
||||
|
||||
Returns:
|
||||
`True` if the class is a stdlib dataclass, `False` otherwise.
|
||||
"""
|
||||
return (
|
||||
dataclasses.is_dataclass(_cls)
|
||||
and not hasattr(_cls, '__pydantic_validator__')
|
||||
and set(_cls.__dataclass_fields__).issuperset(set(getattr(_cls, '__annotations__', {})))
|
||||
)
|
@ -0,0 +1,838 @@
|
||||
"""Logic related to validators applied to models etc. via the `@field_validator` and `@model_validator` decorators."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import types
|
||||
from collections import deque
|
||||
from collections.abc import Iterable
|
||||
from dataclasses import dataclass, field
|
||||
from functools import cached_property, partial, partialmethod
|
||||
from inspect import Parameter, Signature, isdatadescriptor, ismethoddescriptor, signature
|
||||
from itertools import islice
|
||||
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Generic, Literal, TypeVar, Union
|
||||
|
||||
from pydantic_core import PydanticUndefined, PydanticUndefinedType, core_schema
|
||||
from typing_extensions import TypeAlias, is_typeddict
|
||||
|
||||
from ..errors import PydanticUserError
|
||||
from ._core_utils import get_type_ref
|
||||
from ._internal_dataclass import slots_true
|
||||
from ._namespace_utils import GlobalsNamespace, MappingNamespace
|
||||
from ._typing_extra import get_function_type_hints
|
||||
from ._utils import can_be_positional
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..fields import ComputedFieldInfo
|
||||
from ..functional_validators import FieldValidatorModes
|
||||
|
||||
|
||||
@dataclass(**slots_true)
|
||||
class ValidatorDecoratorInfo:
|
||||
"""A container for data from `@validator` so that we can access it
|
||||
while building the pydantic-core schema.
|
||||
|
||||
Attributes:
|
||||
decorator_repr: A class variable representing the decorator string, '@validator'.
|
||||
fields: A tuple of field names the validator should be called on.
|
||||
mode: The proposed validator mode.
|
||||
each_item: For complex objects (sets, lists etc.) whether to validate individual
|
||||
elements rather than the whole object.
|
||||
always: Whether this method and other validators should be called even if the value is missing.
|
||||
check_fields: Whether to check that the fields actually exist on the model.
|
||||
"""
|
||||
|
||||
decorator_repr: ClassVar[str] = '@validator'
|
||||
|
||||
fields: tuple[str, ...]
|
||||
mode: Literal['before', 'after']
|
||||
each_item: bool
|
||||
always: bool
|
||||
check_fields: bool | None
|
||||
|
||||
|
||||
@dataclass(**slots_true)
|
||||
class FieldValidatorDecoratorInfo:
|
||||
"""A container for data from `@field_validator` so that we can access it
|
||||
while building the pydantic-core schema.
|
||||
|
||||
Attributes:
|
||||
decorator_repr: A class variable representing the decorator string, '@field_validator'.
|
||||
fields: A tuple of field names the validator should be called on.
|
||||
mode: The proposed validator mode.
|
||||
check_fields: Whether to check that the fields actually exist on the model.
|
||||
json_schema_input_type: The input type of the function. This is only used to generate
|
||||
the appropriate JSON Schema (in validation mode) and can only specified
|
||||
when `mode` is either `'before'`, `'plain'` or `'wrap'`.
|
||||
"""
|
||||
|
||||
decorator_repr: ClassVar[str] = '@field_validator'
|
||||
|
||||
fields: tuple[str, ...]
|
||||
mode: FieldValidatorModes
|
||||
check_fields: bool | None
|
||||
json_schema_input_type: Any
|
||||
|
||||
|
||||
@dataclass(**slots_true)
|
||||
class RootValidatorDecoratorInfo:
|
||||
"""A container for data from `@root_validator` so that we can access it
|
||||
while building the pydantic-core schema.
|
||||
|
||||
Attributes:
|
||||
decorator_repr: A class variable representing the decorator string, '@root_validator'.
|
||||
mode: The proposed validator mode.
|
||||
"""
|
||||
|
||||
decorator_repr: ClassVar[str] = '@root_validator'
|
||||
mode: Literal['before', 'after']
|
||||
|
||||
|
||||
@dataclass(**slots_true)
|
||||
class FieldSerializerDecoratorInfo:
|
||||
"""A container for data from `@field_serializer` so that we can access it
|
||||
while building the pydantic-core schema.
|
||||
|
||||
Attributes:
|
||||
decorator_repr: A class variable representing the decorator string, '@field_serializer'.
|
||||
fields: A tuple of field names the serializer should be called on.
|
||||
mode: The proposed serializer mode.
|
||||
return_type: The type of the serializer's return value.
|
||||
when_used: The serialization condition. Accepts a string with values `'always'`, `'unless-none'`, `'json'`,
|
||||
and `'json-unless-none'`.
|
||||
check_fields: Whether to check that the fields actually exist on the model.
|
||||
"""
|
||||
|
||||
decorator_repr: ClassVar[str] = '@field_serializer'
|
||||
fields: tuple[str, ...]
|
||||
mode: Literal['plain', 'wrap']
|
||||
return_type: Any
|
||||
when_used: core_schema.WhenUsed
|
||||
check_fields: bool | None
|
||||
|
||||
|
||||
@dataclass(**slots_true)
|
||||
class ModelSerializerDecoratorInfo:
|
||||
"""A container for data from `@model_serializer` so that we can access it
|
||||
while building the pydantic-core schema.
|
||||
|
||||
Attributes:
|
||||
decorator_repr: A class variable representing the decorator string, '@model_serializer'.
|
||||
mode: The proposed serializer mode.
|
||||
return_type: The type of the serializer's return value.
|
||||
when_used: The serialization condition. Accepts a string with values `'always'`, `'unless-none'`, `'json'`,
|
||||
and `'json-unless-none'`.
|
||||
"""
|
||||
|
||||
decorator_repr: ClassVar[str] = '@model_serializer'
|
||||
mode: Literal['plain', 'wrap']
|
||||
return_type: Any
|
||||
when_used: core_schema.WhenUsed
|
||||
|
||||
|
||||
@dataclass(**slots_true)
|
||||
class ModelValidatorDecoratorInfo:
|
||||
"""A container for data from `@model_validator` so that we can access it
|
||||
while building the pydantic-core schema.
|
||||
|
||||
Attributes:
|
||||
decorator_repr: A class variable representing the decorator string, '@model_validator'.
|
||||
mode: The proposed serializer mode.
|
||||
"""
|
||||
|
||||
decorator_repr: ClassVar[str] = '@model_validator'
|
||||
mode: Literal['wrap', 'before', 'after']
|
||||
|
||||
|
||||
DecoratorInfo: TypeAlias = """Union[
|
||||
ValidatorDecoratorInfo,
|
||||
FieldValidatorDecoratorInfo,
|
||||
RootValidatorDecoratorInfo,
|
||||
FieldSerializerDecoratorInfo,
|
||||
ModelSerializerDecoratorInfo,
|
||||
ModelValidatorDecoratorInfo,
|
||||
ComputedFieldInfo,
|
||||
]"""
|
||||
|
||||
ReturnType = TypeVar('ReturnType')
|
||||
DecoratedType: TypeAlias = (
|
||||
'Union[classmethod[Any, Any, ReturnType], staticmethod[Any, ReturnType], Callable[..., ReturnType], property]'
|
||||
)
|
||||
|
||||
|
||||
@dataclass # can't use slots here since we set attributes on `__post_init__`
|
||||
class PydanticDescriptorProxy(Generic[ReturnType]):
|
||||
"""Wrap a classmethod, staticmethod, property or unbound function
|
||||
and act as a descriptor that allows us to detect decorated items
|
||||
from the class' attributes.
|
||||
|
||||
This class' __get__ returns the wrapped item's __get__ result,
|
||||
which makes it transparent for classmethods and staticmethods.
|
||||
|
||||
Attributes:
|
||||
wrapped: The decorator that has to be wrapped.
|
||||
decorator_info: The decorator info.
|
||||
shim: A wrapper function to wrap V1 style function.
|
||||
"""
|
||||
|
||||
wrapped: DecoratedType[ReturnType]
|
||||
decorator_info: DecoratorInfo
|
||||
shim: Callable[[Callable[..., Any]], Callable[..., Any]] | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
for attr in 'setter', 'deleter':
|
||||
if hasattr(self.wrapped, attr):
|
||||
f = partial(self._call_wrapped_attr, name=attr)
|
||||
setattr(self, attr, f)
|
||||
|
||||
def _call_wrapped_attr(self, func: Callable[[Any], None], *, name: str) -> PydanticDescriptorProxy[ReturnType]:
|
||||
self.wrapped = getattr(self.wrapped, name)(func)
|
||||
if isinstance(self.wrapped, property):
|
||||
# update ComputedFieldInfo.wrapped_property
|
||||
from ..fields import ComputedFieldInfo
|
||||
|
||||
if isinstance(self.decorator_info, ComputedFieldInfo):
|
||||
self.decorator_info.wrapped_property = self.wrapped
|
||||
return self
|
||||
|
||||
def __get__(self, obj: object | None, obj_type: type[object] | None = None) -> PydanticDescriptorProxy[ReturnType]:
|
||||
try:
|
||||
return self.wrapped.__get__(obj, obj_type)
|
||||
except AttributeError:
|
||||
# not a descriptor, e.g. a partial object
|
||||
return self.wrapped # type: ignore[return-value]
|
||||
|
||||
def __set_name__(self, instance: Any, name: str) -> None:
|
||||
if hasattr(self.wrapped, '__set_name__'):
|
||||
self.wrapped.__set_name__(instance, name) # pyright: ignore[reportFunctionMemberAccess]
|
||||
|
||||
def __getattr__(self, name: str, /) -> Any:
|
||||
"""Forward checks for __isabstractmethod__ and such."""
|
||||
return getattr(self.wrapped, name)
|
||||
|
||||
|
||||
DecoratorInfoType = TypeVar('DecoratorInfoType', bound=DecoratorInfo)
|
||||
|
||||
|
||||
@dataclass(**slots_true)
|
||||
class Decorator(Generic[DecoratorInfoType]):
|
||||
"""A generic container class to join together the decorator metadata
|
||||
(metadata from decorator itself, which we have when the
|
||||
decorator is called but not when we are building the core-schema)
|
||||
and the bound function (which we have after the class itself is created).
|
||||
|
||||
Attributes:
|
||||
cls_ref: The class ref.
|
||||
cls_var_name: The decorated function name.
|
||||
func: The decorated function.
|
||||
shim: A wrapper function to wrap V1 style function.
|
||||
info: The decorator info.
|
||||
"""
|
||||
|
||||
cls_ref: str
|
||||
cls_var_name: str
|
||||
func: Callable[..., Any]
|
||||
shim: Callable[[Any], Any] | None
|
||||
info: DecoratorInfoType
|
||||
|
||||
@staticmethod
|
||||
def build(
|
||||
cls_: Any,
|
||||
*,
|
||||
cls_var_name: str,
|
||||
shim: Callable[[Any], Any] | None,
|
||||
info: DecoratorInfoType,
|
||||
) -> Decorator[DecoratorInfoType]:
|
||||
"""Build a new decorator.
|
||||
|
||||
Args:
|
||||
cls_: The class.
|
||||
cls_var_name: The decorated function name.
|
||||
shim: A wrapper function to wrap V1 style function.
|
||||
info: The decorator info.
|
||||
|
||||
Returns:
|
||||
The new decorator instance.
|
||||
"""
|
||||
func = get_attribute_from_bases(cls_, cls_var_name)
|
||||
if shim is not None:
|
||||
func = shim(func)
|
||||
func = unwrap_wrapped_function(func, unwrap_partial=False)
|
||||
if not callable(func):
|
||||
# This branch will get hit for classmethod properties
|
||||
attribute = get_attribute_from_base_dicts(cls_, cls_var_name) # prevents the binding call to `__get__`
|
||||
if isinstance(attribute, PydanticDescriptorProxy):
|
||||
func = unwrap_wrapped_function(attribute.wrapped)
|
||||
return Decorator(
|
||||
cls_ref=get_type_ref(cls_),
|
||||
cls_var_name=cls_var_name,
|
||||
func=func,
|
||||
shim=shim,
|
||||
info=info,
|
||||
)
|
||||
|
||||
def bind_to_cls(self, cls: Any) -> Decorator[DecoratorInfoType]:
|
||||
"""Bind the decorator to a class.
|
||||
|
||||
Args:
|
||||
cls: the class.
|
||||
|
||||
Returns:
|
||||
The new decorator instance.
|
||||
"""
|
||||
return self.build(
|
||||
cls,
|
||||
cls_var_name=self.cls_var_name,
|
||||
shim=self.shim,
|
||||
info=self.info,
|
||||
)
|
||||
|
||||
|
||||
def get_bases(tp: type[Any]) -> tuple[type[Any], ...]:
|
||||
"""Get the base classes of a class or typeddict.
|
||||
|
||||
Args:
|
||||
tp: The type or class to get the bases.
|
||||
|
||||
Returns:
|
||||
The base classes.
|
||||
"""
|
||||
if is_typeddict(tp):
|
||||
return tp.__orig_bases__ # type: ignore
|
||||
try:
|
||||
return tp.__bases__
|
||||
except AttributeError:
|
||||
return ()
|
||||
|
||||
|
||||
def mro(tp: type[Any]) -> tuple[type[Any], ...]:
|
||||
"""Calculate the Method Resolution Order of bases using the C3 algorithm.
|
||||
|
||||
See https://www.python.org/download/releases/2.3/mro/
|
||||
"""
|
||||
# try to use the existing mro, for performance mainly
|
||||
# but also because it helps verify the implementation below
|
||||
if not is_typeddict(tp):
|
||||
try:
|
||||
return tp.__mro__
|
||||
except AttributeError:
|
||||
# GenericAlias and some other cases
|
||||
pass
|
||||
|
||||
bases = get_bases(tp)
|
||||
return (tp,) + mro_for_bases(bases)
|
||||
|
||||
|
||||
def mro_for_bases(bases: tuple[type[Any], ...]) -> tuple[type[Any], ...]:
|
||||
def merge_seqs(seqs: list[deque[type[Any]]]) -> Iterable[type[Any]]:
|
||||
while True:
|
||||
non_empty = [seq for seq in seqs if seq]
|
||||
if not non_empty:
|
||||
# Nothing left to process, we're done.
|
||||
return
|
||||
candidate: type[Any] | None = None
|
||||
for seq in non_empty: # Find merge candidates among seq heads.
|
||||
candidate = seq[0]
|
||||
not_head = [s for s in non_empty if candidate in islice(s, 1, None)]
|
||||
if not_head:
|
||||
# Reject the candidate.
|
||||
candidate = None
|
||||
else:
|
||||
break
|
||||
if not candidate:
|
||||
raise TypeError('Inconsistent hierarchy, no C3 MRO is possible')
|
||||
yield candidate
|
||||
for seq in non_empty:
|
||||
# Remove candidate.
|
||||
if seq[0] == candidate:
|
||||
seq.popleft()
|
||||
|
||||
seqs = [deque(mro(base)) for base in bases] + [deque(bases)]
|
||||
return tuple(merge_seqs(seqs))
|
||||
|
||||
|
||||
_sentinel = object()
|
||||
|
||||
|
||||
def get_attribute_from_bases(tp: type[Any] | tuple[type[Any], ...], name: str) -> Any:
|
||||
"""Get the attribute from the next class in the MRO that has it,
|
||||
aiming to simulate calling the method on the actual class.
|
||||
|
||||
The reason for iterating over the mro instead of just getting
|
||||
the attribute (which would do that for us) is to support TypedDict,
|
||||
which lacks a real __mro__, but can have a virtual one constructed
|
||||
from its bases (as done here).
|
||||
|
||||
Args:
|
||||
tp: The type or class to search for the attribute. If a tuple, this is treated as a set of base classes.
|
||||
name: The name of the attribute to retrieve.
|
||||
|
||||
Returns:
|
||||
Any: The attribute value, if found.
|
||||
|
||||
Raises:
|
||||
AttributeError: If the attribute is not found in any class in the MRO.
|
||||
"""
|
||||
if isinstance(tp, tuple):
|
||||
for base in mro_for_bases(tp):
|
||||
attribute = base.__dict__.get(name, _sentinel)
|
||||
if attribute is not _sentinel:
|
||||
attribute_get = getattr(attribute, '__get__', None)
|
||||
if attribute_get is not None:
|
||||
return attribute_get(None, tp)
|
||||
return attribute
|
||||
raise AttributeError(f'{name} not found in {tp}')
|
||||
else:
|
||||
try:
|
||||
return getattr(tp, name)
|
||||
except AttributeError:
|
||||
return get_attribute_from_bases(mro(tp), name)
|
||||
|
||||
|
||||
def get_attribute_from_base_dicts(tp: type[Any], name: str) -> Any:
|
||||
"""Get an attribute out of the `__dict__` following the MRO.
|
||||
This prevents the call to `__get__` on the descriptor, and allows
|
||||
us to get the original function for classmethod properties.
|
||||
|
||||
Args:
|
||||
tp: The type or class to search for the attribute.
|
||||
name: The name of the attribute to retrieve.
|
||||
|
||||
Returns:
|
||||
Any: The attribute value, if found.
|
||||
|
||||
Raises:
|
||||
KeyError: If the attribute is not found in any class's `__dict__` in the MRO.
|
||||
"""
|
||||
for base in reversed(mro(tp)):
|
||||
if name in base.__dict__:
|
||||
return base.__dict__[name]
|
||||
return tp.__dict__[name] # raise the error
|
||||
|
||||
|
||||
@dataclass(**slots_true)
|
||||
class DecoratorInfos:
|
||||
"""Mapping of name in the class namespace to decorator info.
|
||||
|
||||
note that the name in the class namespace is the function or attribute name
|
||||
not the field name!
|
||||
"""
|
||||
|
||||
validators: dict[str, Decorator[ValidatorDecoratorInfo]] = field(default_factory=dict)
|
||||
field_validators: dict[str, Decorator[FieldValidatorDecoratorInfo]] = field(default_factory=dict)
|
||||
root_validators: dict[str, Decorator[RootValidatorDecoratorInfo]] = field(default_factory=dict)
|
||||
field_serializers: dict[str, Decorator[FieldSerializerDecoratorInfo]] = field(default_factory=dict)
|
||||
model_serializers: dict[str, Decorator[ModelSerializerDecoratorInfo]] = field(default_factory=dict)
|
||||
model_validators: dict[str, Decorator[ModelValidatorDecoratorInfo]] = field(default_factory=dict)
|
||||
computed_fields: dict[str, Decorator[ComputedFieldInfo]] = field(default_factory=dict)
|
||||
|
||||
@staticmethod
|
||||
def build(model_dc: type[Any]) -> DecoratorInfos: # noqa: C901 (ignore complexity)
|
||||
"""We want to collect all DecFunc instances that exist as
|
||||
attributes in the namespace of the class (a BaseModel or dataclass)
|
||||
that called us
|
||||
But we want to collect these in the order of the bases
|
||||
So instead of getting them all from the leaf class (the class that called us),
|
||||
we traverse the bases from root (the oldest ancestor class) to leaf
|
||||
and collect all of the instances as we go, taking care to replace
|
||||
any duplicate ones with the last one we see to mimic how function overriding
|
||||
works with inheritance.
|
||||
If we do replace any functions we put the replacement into the position
|
||||
the replaced function was in; that is, we maintain the order.
|
||||
"""
|
||||
# reminder: dicts are ordered and replacement does not alter the order
|
||||
res = DecoratorInfos()
|
||||
for base in reversed(mro(model_dc)[1:]):
|
||||
existing: DecoratorInfos | None = base.__dict__.get('__pydantic_decorators__')
|
||||
if existing is None:
|
||||
existing = DecoratorInfos.build(base)
|
||||
res.validators.update({k: v.bind_to_cls(model_dc) for k, v in existing.validators.items()})
|
||||
res.field_validators.update({k: v.bind_to_cls(model_dc) for k, v in existing.field_validators.items()})
|
||||
res.root_validators.update({k: v.bind_to_cls(model_dc) for k, v in existing.root_validators.items()})
|
||||
res.field_serializers.update({k: v.bind_to_cls(model_dc) for k, v in existing.field_serializers.items()})
|
||||
res.model_serializers.update({k: v.bind_to_cls(model_dc) for k, v in existing.model_serializers.items()})
|
||||
res.model_validators.update({k: v.bind_to_cls(model_dc) for k, v in existing.model_validators.items()})
|
||||
res.computed_fields.update({k: v.bind_to_cls(model_dc) for k, v in existing.computed_fields.items()})
|
||||
|
||||
to_replace: list[tuple[str, Any]] = []
|
||||
|
||||
for var_name, var_value in vars(model_dc).items():
|
||||
if isinstance(var_value, PydanticDescriptorProxy):
|
||||
info = var_value.decorator_info
|
||||
if isinstance(info, ValidatorDecoratorInfo):
|
||||
res.validators[var_name] = Decorator.build(
|
||||
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
|
||||
)
|
||||
elif isinstance(info, FieldValidatorDecoratorInfo):
|
||||
res.field_validators[var_name] = Decorator.build(
|
||||
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
|
||||
)
|
||||
elif isinstance(info, RootValidatorDecoratorInfo):
|
||||
res.root_validators[var_name] = Decorator.build(
|
||||
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
|
||||
)
|
||||
elif isinstance(info, FieldSerializerDecoratorInfo):
|
||||
# check whether a serializer function is already registered for fields
|
||||
for field_serializer_decorator in res.field_serializers.values():
|
||||
# check that each field has at most one serializer function.
|
||||
# serializer functions for the same field in subclasses are allowed,
|
||||
# and are treated as overrides
|
||||
if field_serializer_decorator.cls_var_name == var_name:
|
||||
continue
|
||||
for f in info.fields:
|
||||
if f in field_serializer_decorator.info.fields:
|
||||
raise PydanticUserError(
|
||||
'Multiple field serializer functions were defined '
|
||||
f'for field {f!r}, this is not allowed.',
|
||||
code='multiple-field-serializers',
|
||||
)
|
||||
res.field_serializers[var_name] = Decorator.build(
|
||||
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
|
||||
)
|
||||
elif isinstance(info, ModelValidatorDecoratorInfo):
|
||||
res.model_validators[var_name] = Decorator.build(
|
||||
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
|
||||
)
|
||||
elif isinstance(info, ModelSerializerDecoratorInfo):
|
||||
res.model_serializers[var_name] = Decorator.build(
|
||||
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
|
||||
)
|
||||
else:
|
||||
from ..fields import ComputedFieldInfo
|
||||
|
||||
isinstance(var_value, ComputedFieldInfo)
|
||||
res.computed_fields[var_name] = Decorator.build(
|
||||
model_dc, cls_var_name=var_name, shim=None, info=info
|
||||
)
|
||||
to_replace.append((var_name, var_value.wrapped))
|
||||
if to_replace:
|
||||
# If we can save `__pydantic_decorators__` on the class we'll be able to check for it above
|
||||
# so then we don't need to re-process the type, which means we can discard our descriptor wrappers
|
||||
# and replace them with the thing they are wrapping (see the other setattr call below)
|
||||
# which allows validator class methods to also function as regular class methods
|
||||
model_dc.__pydantic_decorators__ = res
|
||||
for name, value in to_replace:
|
||||
setattr(model_dc, name, value)
|
||||
return res
|
||||
|
||||
|
||||
def inspect_validator(validator: Callable[..., Any], mode: FieldValidatorModes) -> bool:
|
||||
"""Look at a field or model validator function and determine whether it takes an info argument.
|
||||
|
||||
An error is raised if the function has an invalid signature.
|
||||
|
||||
Args:
|
||||
validator: The validator function to inspect.
|
||||
mode: The proposed validator mode.
|
||||
|
||||
Returns:
|
||||
Whether the validator takes an info argument.
|
||||
"""
|
||||
try:
|
||||
sig = signature(validator)
|
||||
except (ValueError, TypeError):
|
||||
# `inspect.signature` might not be able to infer a signature, e.g. with C objects.
|
||||
# In this case, we assume no info argument is present:
|
||||
return False
|
||||
n_positional = count_positional_required_params(sig)
|
||||
if mode == 'wrap':
|
||||
if n_positional == 3:
|
||||
return True
|
||||
elif n_positional == 2:
|
||||
return False
|
||||
else:
|
||||
assert mode in {'before', 'after', 'plain'}, f"invalid mode: {mode!r}, expected 'before', 'after' or 'plain"
|
||||
if n_positional == 2:
|
||||
return True
|
||||
elif n_positional == 1:
|
||||
return False
|
||||
|
||||
raise PydanticUserError(
|
||||
f'Unrecognized field_validator function signature for {validator} with `mode={mode}`:{sig}',
|
||||
code='validator-signature',
|
||||
)
|
||||
|
||||
|
||||
def inspect_field_serializer(serializer: Callable[..., Any], mode: Literal['plain', 'wrap']) -> tuple[bool, bool]:
|
||||
"""Look at a field serializer function and determine if it is a field serializer,
|
||||
and whether it takes an info argument.
|
||||
|
||||
An error is raised if the function has an invalid signature.
|
||||
|
||||
Args:
|
||||
serializer: The serializer function to inspect.
|
||||
mode: The serializer mode, either 'plain' or 'wrap'.
|
||||
|
||||
Returns:
|
||||
Tuple of (is_field_serializer, info_arg).
|
||||
"""
|
||||
try:
|
||||
sig = signature(serializer)
|
||||
except (ValueError, TypeError):
|
||||
# `inspect.signature` might not be able to infer a signature, e.g. with C objects.
|
||||
# In this case, we assume no info argument is present and this is not a method:
|
||||
return (False, False)
|
||||
|
||||
first = next(iter(sig.parameters.values()), None)
|
||||
is_field_serializer = first is not None and first.name == 'self'
|
||||
|
||||
n_positional = count_positional_required_params(sig)
|
||||
if is_field_serializer:
|
||||
# -1 to correct for self parameter
|
||||
info_arg = _serializer_info_arg(mode, n_positional - 1)
|
||||
else:
|
||||
info_arg = _serializer_info_arg(mode, n_positional)
|
||||
|
||||
if info_arg is None:
|
||||
raise PydanticUserError(
|
||||
f'Unrecognized field_serializer function signature for {serializer} with `mode={mode}`:{sig}',
|
||||
code='field-serializer-signature',
|
||||
)
|
||||
|
||||
return is_field_serializer, info_arg
|
||||
|
||||
|
||||
def inspect_annotated_serializer(serializer: Callable[..., Any], mode: Literal['plain', 'wrap']) -> bool:
|
||||
"""Look at a serializer function used via `Annotated` and determine whether it takes an info argument.
|
||||
|
||||
An error is raised if the function has an invalid signature.
|
||||
|
||||
Args:
|
||||
serializer: The serializer function to check.
|
||||
mode: The serializer mode, either 'plain' or 'wrap'.
|
||||
|
||||
Returns:
|
||||
info_arg
|
||||
"""
|
||||
try:
|
||||
sig = signature(serializer)
|
||||
except (ValueError, TypeError):
|
||||
# `inspect.signature` might not be able to infer a signature, e.g. with C objects.
|
||||
# In this case, we assume no info argument is present:
|
||||
return False
|
||||
info_arg = _serializer_info_arg(mode, count_positional_required_params(sig))
|
||||
if info_arg is None:
|
||||
raise PydanticUserError(
|
||||
f'Unrecognized field_serializer function signature for {serializer} with `mode={mode}`:{sig}',
|
||||
code='field-serializer-signature',
|
||||
)
|
||||
else:
|
||||
return info_arg
|
||||
|
||||
|
||||
def inspect_model_serializer(serializer: Callable[..., Any], mode: Literal['plain', 'wrap']) -> bool:
|
||||
"""Look at a model serializer function and determine whether it takes an info argument.
|
||||
|
||||
An error is raised if the function has an invalid signature.
|
||||
|
||||
Args:
|
||||
serializer: The serializer function to check.
|
||||
mode: The serializer mode, either 'plain' or 'wrap'.
|
||||
|
||||
Returns:
|
||||
`info_arg` - whether the function expects an info argument.
|
||||
"""
|
||||
if isinstance(serializer, (staticmethod, classmethod)) or not is_instance_method_from_sig(serializer):
|
||||
raise PydanticUserError(
|
||||
'`@model_serializer` must be applied to instance methods', code='model-serializer-instance-method'
|
||||
)
|
||||
|
||||
sig = signature(serializer)
|
||||
info_arg = _serializer_info_arg(mode, count_positional_required_params(sig))
|
||||
if info_arg is None:
|
||||
raise PydanticUserError(
|
||||
f'Unrecognized model_serializer function signature for {serializer} with `mode={mode}`:{sig}',
|
||||
code='model-serializer-signature',
|
||||
)
|
||||
else:
|
||||
return info_arg
|
||||
|
||||
|
||||
def _serializer_info_arg(mode: Literal['plain', 'wrap'], n_positional: int) -> bool | None:
|
||||
if mode == 'plain':
|
||||
if n_positional == 1:
|
||||
# (input_value: Any, /) -> Any
|
||||
return False
|
||||
elif n_positional == 2:
|
||||
# (model: Any, input_value: Any, /) -> Any
|
||||
return True
|
||||
else:
|
||||
assert mode == 'wrap', f"invalid mode: {mode!r}, expected 'plain' or 'wrap'"
|
||||
if n_positional == 2:
|
||||
# (input_value: Any, serializer: SerializerFunctionWrapHandler, /) -> Any
|
||||
return False
|
||||
elif n_positional == 3:
|
||||
# (input_value: Any, serializer: SerializerFunctionWrapHandler, info: SerializationInfo, /) -> Any
|
||||
return True
|
||||
|
||||
return None
|
||||
|
||||
|
||||
AnyDecoratorCallable: TypeAlias = (
|
||||
'Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any], Callable[..., Any]]'
|
||||
)
|
||||
|
||||
|
||||
def is_instance_method_from_sig(function: AnyDecoratorCallable) -> bool:
|
||||
"""Whether the function is an instance method.
|
||||
|
||||
It will consider a function as instance method if the first parameter of
|
||||
function is `self`.
|
||||
|
||||
Args:
|
||||
function: The function to check.
|
||||
|
||||
Returns:
|
||||
`True` if the function is an instance method, `False` otherwise.
|
||||
"""
|
||||
sig = signature(unwrap_wrapped_function(function))
|
||||
first = next(iter(sig.parameters.values()), None)
|
||||
if first and first.name == 'self':
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def ensure_classmethod_based_on_signature(function: AnyDecoratorCallable) -> Any:
|
||||
"""Apply the `@classmethod` decorator on the function.
|
||||
|
||||
Args:
|
||||
function: The function to apply the decorator on.
|
||||
|
||||
Return:
|
||||
The `@classmethod` decorator applied function.
|
||||
"""
|
||||
if not isinstance(
|
||||
unwrap_wrapped_function(function, unwrap_class_static_method=False), classmethod
|
||||
) and _is_classmethod_from_sig(function):
|
||||
return classmethod(function) # type: ignore[arg-type]
|
||||
return function
|
||||
|
||||
|
||||
def _is_classmethod_from_sig(function: AnyDecoratorCallable) -> bool:
|
||||
sig = signature(unwrap_wrapped_function(function))
|
||||
first = next(iter(sig.parameters.values()), None)
|
||||
if first and first.name == 'cls':
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def unwrap_wrapped_function(
|
||||
func: Any,
|
||||
*,
|
||||
unwrap_partial: bool = True,
|
||||
unwrap_class_static_method: bool = True,
|
||||
) -> Any:
|
||||
"""Recursively unwraps a wrapped function until the underlying function is reached.
|
||||
This handles property, functools.partial, functools.partialmethod, staticmethod, and classmethod.
|
||||
|
||||
Args:
|
||||
func: The function to unwrap.
|
||||
unwrap_partial: If True (default), unwrap partial and partialmethod decorators.
|
||||
unwrap_class_static_method: If True (default), also unwrap classmethod and staticmethod
|
||||
decorators. If False, only unwrap partial and partialmethod decorators.
|
||||
|
||||
Returns:
|
||||
The underlying function of the wrapped function.
|
||||
"""
|
||||
# Define the types we want to check against as a single tuple.
|
||||
unwrap_types = (
|
||||
(property, cached_property)
|
||||
+ ((partial, partialmethod) if unwrap_partial else ())
|
||||
+ ((staticmethod, classmethod) if unwrap_class_static_method else ())
|
||||
)
|
||||
|
||||
while isinstance(func, unwrap_types):
|
||||
if unwrap_class_static_method and isinstance(func, (classmethod, staticmethod)):
|
||||
func = func.__func__
|
||||
elif isinstance(func, (partial, partialmethod)):
|
||||
func = func.func
|
||||
elif isinstance(func, property):
|
||||
func = func.fget # arbitrary choice, convenient for computed fields
|
||||
else:
|
||||
# Make coverage happy as it can only get here in the last possible case
|
||||
assert isinstance(func, cached_property)
|
||||
func = func.func # type: ignore
|
||||
|
||||
return func
|
||||
|
||||
|
||||
_function_like = (
|
||||
partial,
|
||||
partialmethod,
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
types.MethodType,
|
||||
types.WrapperDescriptorType,
|
||||
types.MethodWrapperType,
|
||||
types.MemberDescriptorType,
|
||||
)
|
||||
|
||||
|
||||
def get_callable_return_type(
|
||||
callable_obj: Any,
|
||||
globalns: GlobalsNamespace | None = None,
|
||||
localns: MappingNamespace | None = None,
|
||||
) -> Any | PydanticUndefinedType:
|
||||
"""Get the callable return type.
|
||||
|
||||
Args:
|
||||
callable_obj: The callable to analyze.
|
||||
globalns: The globals namespace to use during type annotation evaluation.
|
||||
localns: The locals namespace to use during type annotation evaluation.
|
||||
|
||||
Returns:
|
||||
The function return type.
|
||||
"""
|
||||
if isinstance(callable_obj, type):
|
||||
# types are callables, and we assume the return type
|
||||
# is the type itself (e.g. `int()` results in an instance of `int`).
|
||||
return callable_obj
|
||||
|
||||
if not isinstance(callable_obj, _function_like):
|
||||
call_func = getattr(type(callable_obj), '__call__', None) # noqa: B004
|
||||
if call_func is not None:
|
||||
callable_obj = call_func
|
||||
|
||||
hints = get_function_type_hints(
|
||||
unwrap_wrapped_function(callable_obj),
|
||||
include_keys={'return'},
|
||||
globalns=globalns,
|
||||
localns=localns,
|
||||
)
|
||||
return hints.get('return', PydanticUndefined)
|
||||
|
||||
|
||||
def count_positional_required_params(sig: Signature) -> int:
|
||||
"""Get the number of positional (required) arguments of a signature.
|
||||
|
||||
This function should only be used to inspect signatures of validation and serialization functions.
|
||||
The first argument (the value being serialized or validated) is counted as a required argument
|
||||
even if a default value exists.
|
||||
|
||||
Returns:
|
||||
The number of positional arguments of a signature.
|
||||
"""
|
||||
parameters = list(sig.parameters.values())
|
||||
return sum(
|
||||
1
|
||||
for param in parameters
|
||||
if can_be_positional(param)
|
||||
# First argument is the value being validated/serialized, and can have a default value
|
||||
# (e.g. `float`, which has signature `(x=0, /)`). We assume other parameters (the info arg
|
||||
# for instance) should be required, and thus without any default value.
|
||||
and (param.default is Parameter.empty or param is parameters[0])
|
||||
)
|
||||
|
||||
|
||||
def ensure_property(f: Any) -> Any:
|
||||
"""Ensure that a function is a `property` or `cached_property`, or is a valid descriptor.
|
||||
|
||||
Args:
|
||||
f: The function to check.
|
||||
|
||||
Returns:
|
||||
The function, or a `property` or `cached_property` instance wrapping the function.
|
||||
"""
|
||||
if ismethoddescriptor(f) or isdatadescriptor(f):
|
||||
return f
|
||||
else:
|
||||
return property(f)
|
@ -0,0 +1,174 @@
|
||||
"""Logic for V1 validators, e.g. `@validator` and `@root_validator`."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
from inspect import Parameter, signature
|
||||
from typing import Any, Union, cast
|
||||
|
||||
from pydantic_core import core_schema
|
||||
from typing_extensions import Protocol
|
||||
|
||||
from ..errors import PydanticUserError
|
||||
from ._utils import can_be_positional
|
||||
|
||||
|
||||
class V1OnlyValueValidator(Protocol):
|
||||
"""A simple validator, supported for V1 validators and V2 validators."""
|
||||
|
||||
def __call__(self, __value: Any) -> Any: ...
|
||||
|
||||
|
||||
class V1ValidatorWithValues(Protocol):
|
||||
"""A validator with `values` argument, supported for V1 validators and V2 validators."""
|
||||
|
||||
def __call__(self, __value: Any, values: dict[str, Any]) -> Any: ...
|
||||
|
||||
|
||||
class V1ValidatorWithValuesKwOnly(Protocol):
|
||||
"""A validator with keyword only `values` argument, supported for V1 validators and V2 validators."""
|
||||
|
||||
def __call__(self, __value: Any, *, values: dict[str, Any]) -> Any: ...
|
||||
|
||||
|
||||
class V1ValidatorWithKwargs(Protocol):
|
||||
"""A validator with `kwargs` argument, supported for V1 validators and V2 validators."""
|
||||
|
||||
def __call__(self, __value: Any, **kwargs: Any) -> Any: ...
|
||||
|
||||
|
||||
class V1ValidatorWithValuesAndKwargs(Protocol):
|
||||
"""A validator with `values` and `kwargs` arguments, supported for V1 validators and V2 validators."""
|
||||
|
||||
def __call__(self, __value: Any, values: dict[str, Any], **kwargs: Any) -> Any: ...
|
||||
|
||||
|
||||
V1Validator = Union[
|
||||
V1ValidatorWithValues, V1ValidatorWithValuesKwOnly, V1ValidatorWithKwargs, V1ValidatorWithValuesAndKwargs
|
||||
]
|
||||
|
||||
|
||||
def can_be_keyword(param: Parameter) -> bool:
|
||||
return param.kind in (Parameter.POSITIONAL_OR_KEYWORD, Parameter.KEYWORD_ONLY)
|
||||
|
||||
|
||||
def make_generic_v1_field_validator(validator: V1Validator) -> core_schema.WithInfoValidatorFunction:
|
||||
"""Wrap a V1 style field validator for V2 compatibility.
|
||||
|
||||
Args:
|
||||
validator: The V1 style field validator.
|
||||
|
||||
Returns:
|
||||
A wrapped V2 style field validator.
|
||||
|
||||
Raises:
|
||||
PydanticUserError: If the signature is not supported or the parameters are
|
||||
not available in Pydantic V2.
|
||||
"""
|
||||
sig = signature(validator)
|
||||
|
||||
needs_values_kw = False
|
||||
|
||||
for param_num, (param_name, parameter) in enumerate(sig.parameters.items()):
|
||||
if can_be_keyword(parameter) and param_name in ('field', 'config'):
|
||||
raise PydanticUserError(
|
||||
'The `field` and `config` parameters are not available in Pydantic V2, '
|
||||
'please use the `info` parameter instead.',
|
||||
code='validator-field-config-info',
|
||||
)
|
||||
if parameter.kind is Parameter.VAR_KEYWORD:
|
||||
needs_values_kw = True
|
||||
elif can_be_keyword(parameter) and param_name == 'values':
|
||||
needs_values_kw = True
|
||||
elif can_be_positional(parameter) and param_num == 0:
|
||||
# value
|
||||
continue
|
||||
elif parameter.default is Parameter.empty: # ignore params with defaults e.g. bound by functools.partial
|
||||
raise PydanticUserError(
|
||||
f'Unsupported signature for V1 style validator {validator}: {sig} is not supported.',
|
||||
code='validator-v1-signature',
|
||||
)
|
||||
|
||||
if needs_values_kw:
|
||||
# (v, **kwargs), (v, values, **kwargs), (v, *, values, **kwargs) or (v, *, values)
|
||||
val1 = cast(V1ValidatorWithValues, validator)
|
||||
|
||||
def wrapper1(value: Any, info: core_schema.ValidationInfo) -> Any:
|
||||
return val1(value, values=info.data)
|
||||
|
||||
return wrapper1
|
||||
else:
|
||||
val2 = cast(V1OnlyValueValidator, validator)
|
||||
|
||||
def wrapper2(value: Any, _: core_schema.ValidationInfo) -> Any:
|
||||
return val2(value)
|
||||
|
||||
return wrapper2
|
||||
|
||||
|
||||
RootValidatorValues = dict[str, Any]
|
||||
# technically tuple[model_dict, model_extra, fields_set] | tuple[dataclass_dict, init_vars]
|
||||
RootValidatorFieldsTuple = tuple[Any, ...]
|
||||
|
||||
|
||||
class V1RootValidatorFunction(Protocol):
|
||||
"""A simple root validator, supported for V1 validators and V2 validators."""
|
||||
|
||||
def __call__(self, __values: RootValidatorValues) -> RootValidatorValues: ...
|
||||
|
||||
|
||||
class V2CoreBeforeRootValidator(Protocol):
|
||||
"""V2 validator with mode='before'."""
|
||||
|
||||
def __call__(self, __values: RootValidatorValues, __info: core_schema.ValidationInfo) -> RootValidatorValues: ...
|
||||
|
||||
|
||||
class V2CoreAfterRootValidator(Protocol):
|
||||
"""V2 validator with mode='after'."""
|
||||
|
||||
def __call__(
|
||||
self, __fields_tuple: RootValidatorFieldsTuple, __info: core_schema.ValidationInfo
|
||||
) -> RootValidatorFieldsTuple: ...
|
||||
|
||||
|
||||
def make_v1_generic_root_validator(
|
||||
validator: V1RootValidatorFunction, pre: bool
|
||||
) -> V2CoreBeforeRootValidator | V2CoreAfterRootValidator:
|
||||
"""Wrap a V1 style root validator for V2 compatibility.
|
||||
|
||||
Args:
|
||||
validator: The V1 style field validator.
|
||||
pre: Whether the validator is a pre validator.
|
||||
|
||||
Returns:
|
||||
A wrapped V2 style validator.
|
||||
"""
|
||||
if pre is True:
|
||||
# mode='before' for pydantic-core
|
||||
def _wrapper1(values: RootValidatorValues, _: core_schema.ValidationInfo) -> RootValidatorValues:
|
||||
return validator(values)
|
||||
|
||||
return _wrapper1
|
||||
|
||||
# mode='after' for pydantic-core
|
||||
def _wrapper2(fields_tuple: RootValidatorFieldsTuple, _: core_schema.ValidationInfo) -> RootValidatorFieldsTuple:
|
||||
if len(fields_tuple) == 2:
|
||||
# dataclass, this is easy
|
||||
values, init_vars = fields_tuple
|
||||
values = validator(values)
|
||||
return values, init_vars
|
||||
else:
|
||||
# ugly hack: to match v1 behaviour, we merge values and model_extra, then split them up based on fields
|
||||
# afterwards
|
||||
model_dict, model_extra, fields_set = fields_tuple
|
||||
if model_extra:
|
||||
fields = set(model_dict.keys())
|
||||
model_dict.update(model_extra)
|
||||
model_dict_new = validator(model_dict)
|
||||
for k in list(model_dict_new.keys()):
|
||||
if k not in fields:
|
||||
model_extra[k] = model_dict_new.pop(k)
|
||||
else:
|
||||
model_dict_new = validator(model_dict)
|
||||
return model_dict_new, model_extra, fields_set
|
||||
|
||||
return _wrapper2
|
@ -0,0 +1,479 @@
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
from collections.abc import Hashable, Sequence
|
||||
from typing import TYPE_CHECKING, Any, cast
|
||||
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
|
||||
from ..errors import PydanticUserError
|
||||
from . import _core_utils
|
||||
from ._core_utils import (
|
||||
CoreSchemaField,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..types import Discriminator
|
||||
from ._core_metadata import CoreMetadata
|
||||
|
||||
|
||||
class MissingDefinitionForUnionRef(Exception):
|
||||
"""Raised when applying a discriminated union discriminator to a schema
|
||||
requires a definition that is not yet defined
|
||||
"""
|
||||
|
||||
def __init__(self, ref: str) -> None:
|
||||
self.ref = ref
|
||||
super().__init__(f'Missing definition for ref {self.ref!r}')
|
||||
|
||||
|
||||
def set_discriminator_in_metadata(schema: CoreSchema, discriminator: Any) -> None:
|
||||
metadata = cast('CoreMetadata', schema.setdefault('metadata', {}))
|
||||
metadata['pydantic_internal_union_discriminator'] = discriminator
|
||||
|
||||
|
||||
def apply_discriminator(
|
||||
schema: core_schema.CoreSchema,
|
||||
discriminator: str | Discriminator,
|
||||
definitions: dict[str, core_schema.CoreSchema] | None = None,
|
||||
) -> core_schema.CoreSchema:
|
||||
"""Applies the discriminator and returns a new core schema.
|
||||
|
||||
Args:
|
||||
schema: The input schema.
|
||||
discriminator: The name of the field which will serve as the discriminator.
|
||||
definitions: A mapping of schema ref to schema.
|
||||
|
||||
Returns:
|
||||
The new core schema.
|
||||
|
||||
Raises:
|
||||
TypeError:
|
||||
- If `discriminator` is used with invalid union variant.
|
||||
- If `discriminator` is used with `Union` type with one variant.
|
||||
- If `discriminator` value mapped to multiple choices.
|
||||
MissingDefinitionForUnionRef:
|
||||
If the definition for ref is missing.
|
||||
PydanticUserError:
|
||||
- If a model in union doesn't have a discriminator field.
|
||||
- If discriminator field has a non-string alias.
|
||||
- If discriminator fields have different aliases.
|
||||
- If discriminator field not of type `Literal`.
|
||||
"""
|
||||
from ..types import Discriminator
|
||||
|
||||
if isinstance(discriminator, Discriminator):
|
||||
if isinstance(discriminator.discriminator, str):
|
||||
discriminator = discriminator.discriminator
|
||||
else:
|
||||
return discriminator._convert_schema(schema)
|
||||
|
||||
return _ApplyInferredDiscriminator(discriminator, definitions or {}).apply(schema)
|
||||
|
||||
|
||||
class _ApplyInferredDiscriminator:
|
||||
"""This class is used to convert an input schema containing a union schema into one where that union is
|
||||
replaced with a tagged-union, with all the associated debugging and performance benefits.
|
||||
|
||||
This is done by:
|
||||
* Validating that the input schema is compatible with the provided discriminator
|
||||
* Introspecting the schema to determine which discriminator values should map to which union choices
|
||||
* Handling various edge cases such as 'definitions', 'default', 'nullable' schemas, and more
|
||||
|
||||
I have chosen to implement the conversion algorithm in this class, rather than a function,
|
||||
to make it easier to maintain state while recursively walking the provided CoreSchema.
|
||||
"""
|
||||
|
||||
def __init__(self, discriminator: str, definitions: dict[str, core_schema.CoreSchema]):
|
||||
# `discriminator` should be the name of the field which will serve as the discriminator.
|
||||
# It must be the python name of the field, and *not* the field's alias. Note that as of now,
|
||||
# all members of a discriminated union _must_ use a field with the same name as the discriminator.
|
||||
# This may change if/when we expose a way to manually specify the TaggedUnionSchema's choices.
|
||||
self.discriminator = discriminator
|
||||
|
||||
# `definitions` should contain a mapping of schema ref to schema for all schemas which might
|
||||
# be referenced by some choice
|
||||
self.definitions = definitions
|
||||
|
||||
# `_discriminator_alias` will hold the value, if present, of the alias for the discriminator
|
||||
#
|
||||
# Note: following the v1 implementation, we currently disallow the use of different aliases
|
||||
# for different choices. This is not a limitation of pydantic_core, but if we try to handle
|
||||
# this, the inference logic gets complicated very quickly, and could result in confusing
|
||||
# debugging challenges for users making subtle mistakes.
|
||||
#
|
||||
# Rather than trying to do the most powerful inference possible, I think we should eventually
|
||||
# expose a way to more-manually control the way the TaggedUnionSchema is constructed through
|
||||
# the use of a new type which would be placed as an Annotation on the Union type. This would
|
||||
# provide the full flexibility/power of pydantic_core's TaggedUnionSchema where necessary for
|
||||
# more complex cases, without over-complicating the inference logic for the common cases.
|
||||
self._discriminator_alias: str | None = None
|
||||
|
||||
# `_should_be_nullable` indicates whether the converted union has `None` as an allowed value.
|
||||
# If `None` is an acceptable value of the (possibly-wrapped) union, we ignore it while
|
||||
# constructing the TaggedUnionSchema, but set the `_should_be_nullable` attribute to True.
|
||||
# Once we have constructed the TaggedUnionSchema, if `_should_be_nullable` is True, we ensure
|
||||
# that the final schema gets wrapped as a NullableSchema. This has the same semantics on the
|
||||
# python side, but resolves the issue that `None` cannot correspond to any discriminator values.
|
||||
self._should_be_nullable = False
|
||||
|
||||
# `_is_nullable` is used to track if the final produced schema will definitely be nullable;
|
||||
# we set it to True if the input schema is wrapped in a nullable schema that we know will be preserved
|
||||
# as an indication that, even if None is discovered as one of the union choices, we will not need to wrap
|
||||
# the final value in another nullable schema.
|
||||
#
|
||||
# This is more complicated than just checking for the final outermost schema having type 'nullable' thanks
|
||||
# to the possible presence of other wrapper schemas such as DefinitionsSchema, WithDefaultSchema, etc.
|
||||
self._is_nullable = False
|
||||
|
||||
# `_choices_to_handle` serves as a stack of choices to add to the tagged union. Initially, choices
|
||||
# from the union in the wrapped schema will be appended to this list, and the recursive choice-handling
|
||||
# algorithm may add more choices to this stack as (nested) unions are encountered.
|
||||
self._choices_to_handle: list[core_schema.CoreSchema] = []
|
||||
|
||||
# `_tagged_union_choices` is built during the call to `apply`, and will hold the choices to be included
|
||||
# in the output TaggedUnionSchema that will replace the union from the input schema
|
||||
self._tagged_union_choices: dict[Hashable, core_schema.CoreSchema] = {}
|
||||
|
||||
# `_used` is changed to True after applying the discriminator to prevent accidental reuse
|
||||
self._used = False
|
||||
|
||||
def apply(self, schema: core_schema.CoreSchema) -> core_schema.CoreSchema:
|
||||
"""Return a new CoreSchema based on `schema` that uses a tagged-union with the discriminator provided
|
||||
to this class.
|
||||
|
||||
Args:
|
||||
schema: The input schema.
|
||||
|
||||
Returns:
|
||||
The new core schema.
|
||||
|
||||
Raises:
|
||||
TypeError:
|
||||
- If `discriminator` is used with invalid union variant.
|
||||
- If `discriminator` is used with `Union` type with one variant.
|
||||
- If `discriminator` value mapped to multiple choices.
|
||||
ValueError:
|
||||
If the definition for ref is missing.
|
||||
PydanticUserError:
|
||||
- If a model in union doesn't have a discriminator field.
|
||||
- If discriminator field has a non-string alias.
|
||||
- If discriminator fields have different aliases.
|
||||
- If discriminator field not of type `Literal`.
|
||||
"""
|
||||
assert not self._used
|
||||
schema = self._apply_to_root(schema)
|
||||
if self._should_be_nullable and not self._is_nullable:
|
||||
schema = core_schema.nullable_schema(schema)
|
||||
self._used = True
|
||||
return schema
|
||||
|
||||
def _apply_to_root(self, schema: core_schema.CoreSchema) -> core_schema.CoreSchema:
|
||||
"""This method handles the outer-most stage of recursion over the input schema:
|
||||
unwrapping nullable or definitions schemas, and calling the `_handle_choice`
|
||||
method iteratively on the choices extracted (recursively) from the possibly-wrapped union.
|
||||
"""
|
||||
if schema['type'] == 'nullable':
|
||||
self._is_nullable = True
|
||||
wrapped = self._apply_to_root(schema['schema'])
|
||||
nullable_wrapper = schema.copy()
|
||||
nullable_wrapper['schema'] = wrapped
|
||||
return nullable_wrapper
|
||||
|
||||
if schema['type'] == 'definitions':
|
||||
wrapped = self._apply_to_root(schema['schema'])
|
||||
definitions_wrapper = schema.copy()
|
||||
definitions_wrapper['schema'] = wrapped
|
||||
return definitions_wrapper
|
||||
|
||||
if schema['type'] != 'union':
|
||||
# If the schema is not a union, it probably means it just had a single member and
|
||||
# was flattened by pydantic_core.
|
||||
# However, it still may make sense to apply the discriminator to this schema,
|
||||
# as a way to get discriminated-union-style error messages, so we allow this here.
|
||||
schema = core_schema.union_schema([schema])
|
||||
|
||||
# Reverse the choices list before extending the stack so that they get handled in the order they occur
|
||||
choices_schemas = [v[0] if isinstance(v, tuple) else v for v in schema['choices'][::-1]]
|
||||
self._choices_to_handle.extend(choices_schemas)
|
||||
while self._choices_to_handle:
|
||||
choice = self._choices_to_handle.pop()
|
||||
self._handle_choice(choice)
|
||||
|
||||
if self._discriminator_alias is not None and self._discriminator_alias != self.discriminator:
|
||||
# * We need to annotate `discriminator` as a union here to handle both branches of this conditional
|
||||
# * We need to annotate `discriminator` as list[list[str | int]] and not list[list[str]] due to the
|
||||
# invariance of list, and because list[list[str | int]] is the type of the discriminator argument
|
||||
# to tagged_union_schema below
|
||||
# * See the docstring of pydantic_core.core_schema.tagged_union_schema for more details about how to
|
||||
# interpret the value of the discriminator argument to tagged_union_schema. (The list[list[str]] here
|
||||
# is the appropriate way to provide a list of fallback attributes to check for a discriminator value.)
|
||||
discriminator: str | list[list[str | int]] = [[self.discriminator], [self._discriminator_alias]]
|
||||
else:
|
||||
discriminator = self.discriminator
|
||||
return core_schema.tagged_union_schema(
|
||||
choices=self._tagged_union_choices,
|
||||
discriminator=discriminator,
|
||||
custom_error_type=schema.get('custom_error_type'),
|
||||
custom_error_message=schema.get('custom_error_message'),
|
||||
custom_error_context=schema.get('custom_error_context'),
|
||||
strict=False,
|
||||
from_attributes=True,
|
||||
ref=schema.get('ref'),
|
||||
metadata=schema.get('metadata'),
|
||||
serialization=schema.get('serialization'),
|
||||
)
|
||||
|
||||
def _handle_choice(self, choice: core_schema.CoreSchema) -> None:
|
||||
"""This method handles the "middle" stage of recursion over the input schema.
|
||||
Specifically, it is responsible for handling each choice of the outermost union
|
||||
(and any "coalesced" choices obtained from inner unions).
|
||||
|
||||
Here, "handling" entails:
|
||||
* Coalescing nested unions and compatible tagged-unions
|
||||
* Tracking the presence of 'none' and 'nullable' schemas occurring as choices
|
||||
* Validating that each allowed discriminator value maps to a unique choice
|
||||
* Updating the _tagged_union_choices mapping that will ultimately be used to build the TaggedUnionSchema.
|
||||
"""
|
||||
if choice['type'] == 'definition-ref':
|
||||
if choice['schema_ref'] not in self.definitions:
|
||||
raise MissingDefinitionForUnionRef(choice['schema_ref'])
|
||||
|
||||
if choice['type'] == 'none':
|
||||
self._should_be_nullable = True
|
||||
elif choice['type'] == 'definitions':
|
||||
self._handle_choice(choice['schema'])
|
||||
elif choice['type'] == 'nullable':
|
||||
self._should_be_nullable = True
|
||||
self._handle_choice(choice['schema']) # unwrap the nullable schema
|
||||
elif choice['type'] == 'union':
|
||||
# Reverse the choices list before extending the stack so that they get handled in the order they occur
|
||||
choices_schemas = [v[0] if isinstance(v, tuple) else v for v in choice['choices'][::-1]]
|
||||
self._choices_to_handle.extend(choices_schemas)
|
||||
elif choice['type'] not in {
|
||||
'model',
|
||||
'typed-dict',
|
||||
'tagged-union',
|
||||
'lax-or-strict',
|
||||
'dataclass',
|
||||
'dataclass-args',
|
||||
'definition-ref',
|
||||
} and not _core_utils.is_function_with_inner_schema(choice):
|
||||
# We should eventually handle 'definition-ref' as well
|
||||
err_str = f'The core schema type {choice["type"]!r} is not a valid discriminated union variant.'
|
||||
if choice['type'] == 'list':
|
||||
err_str += (
|
||||
' If you are making use of a list of union types, make sure the discriminator is applied to the '
|
||||
'union type and not the list (e.g. `list[Annotated[<T> | <U>, Field(discriminator=...)]]`).'
|
||||
)
|
||||
raise TypeError(err_str)
|
||||
else:
|
||||
if choice['type'] == 'tagged-union' and self._is_discriminator_shared(choice):
|
||||
# In this case, this inner tagged-union is compatible with the outer tagged-union,
|
||||
# and its choices can be coalesced into the outer TaggedUnionSchema.
|
||||
subchoices = [x for x in choice['choices'].values() if not isinstance(x, (str, int))]
|
||||
# Reverse the choices list before extending the stack so that they get handled in the order they occur
|
||||
self._choices_to_handle.extend(subchoices[::-1])
|
||||
return
|
||||
|
||||
inferred_discriminator_values = self._infer_discriminator_values_for_choice(choice, source_name=None)
|
||||
self._set_unique_choice_for_values(choice, inferred_discriminator_values)
|
||||
|
||||
def _is_discriminator_shared(self, choice: core_schema.TaggedUnionSchema) -> bool:
|
||||
"""This method returns a boolean indicating whether the discriminator for the `choice`
|
||||
is the same as that being used for the outermost tagged union. This is used to
|
||||
determine whether this TaggedUnionSchema choice should be "coalesced" into the top level,
|
||||
or whether it should be treated as a separate (nested) choice.
|
||||
"""
|
||||
inner_discriminator = choice['discriminator']
|
||||
return inner_discriminator == self.discriminator or (
|
||||
isinstance(inner_discriminator, list)
|
||||
and (self.discriminator in inner_discriminator or [self.discriminator] in inner_discriminator)
|
||||
)
|
||||
|
||||
def _infer_discriminator_values_for_choice( # noqa C901
|
||||
self, choice: core_schema.CoreSchema, source_name: str | None
|
||||
) -> list[str | int]:
|
||||
"""This function recurses over `choice`, extracting all discriminator values that should map to this choice.
|
||||
|
||||
`model_name` is accepted for the purpose of producing useful error messages.
|
||||
"""
|
||||
if choice['type'] == 'definitions':
|
||||
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=source_name)
|
||||
|
||||
elif _core_utils.is_function_with_inner_schema(choice):
|
||||
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=source_name)
|
||||
|
||||
elif choice['type'] == 'lax-or-strict':
|
||||
return sorted(
|
||||
set(
|
||||
self._infer_discriminator_values_for_choice(choice['lax_schema'], source_name=None)
|
||||
+ self._infer_discriminator_values_for_choice(choice['strict_schema'], source_name=None)
|
||||
)
|
||||
)
|
||||
|
||||
elif choice['type'] == 'tagged-union':
|
||||
values: list[str | int] = []
|
||||
# Ignore str/int "choices" since these are just references to other choices
|
||||
subchoices = [x for x in choice['choices'].values() if not isinstance(x, (str, int))]
|
||||
for subchoice in subchoices:
|
||||
subchoice_values = self._infer_discriminator_values_for_choice(subchoice, source_name=None)
|
||||
values.extend(subchoice_values)
|
||||
return values
|
||||
|
||||
elif choice['type'] == 'union':
|
||||
values = []
|
||||
for subchoice in choice['choices']:
|
||||
subchoice_schema = subchoice[0] if isinstance(subchoice, tuple) else subchoice
|
||||
subchoice_values = self._infer_discriminator_values_for_choice(subchoice_schema, source_name=None)
|
||||
values.extend(subchoice_values)
|
||||
return values
|
||||
|
||||
elif choice['type'] == 'nullable':
|
||||
self._should_be_nullable = True
|
||||
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=None)
|
||||
|
||||
elif choice['type'] == 'model':
|
||||
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=choice['cls'].__name__)
|
||||
|
||||
elif choice['type'] == 'dataclass':
|
||||
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=choice['cls'].__name__)
|
||||
|
||||
elif choice['type'] == 'model-fields':
|
||||
return self._infer_discriminator_values_for_model_choice(choice, source_name=source_name)
|
||||
|
||||
elif choice['type'] == 'dataclass-args':
|
||||
return self._infer_discriminator_values_for_dataclass_choice(choice, source_name=source_name)
|
||||
|
||||
elif choice['type'] == 'typed-dict':
|
||||
return self._infer_discriminator_values_for_typed_dict_choice(choice, source_name=source_name)
|
||||
|
||||
elif choice['type'] == 'definition-ref':
|
||||
schema_ref = choice['schema_ref']
|
||||
if schema_ref not in self.definitions:
|
||||
raise MissingDefinitionForUnionRef(schema_ref)
|
||||
return self._infer_discriminator_values_for_choice(self.definitions[schema_ref], source_name=source_name)
|
||||
else:
|
||||
err_str = f'The core schema type {choice["type"]!r} is not a valid discriminated union variant.'
|
||||
if choice['type'] == 'list':
|
||||
err_str += (
|
||||
' If you are making use of a list of union types, make sure the discriminator is applied to the '
|
||||
'union type and not the list (e.g. `list[Annotated[<T> | <U>, Field(discriminator=...)]]`).'
|
||||
)
|
||||
raise TypeError(err_str)
|
||||
|
||||
def _infer_discriminator_values_for_typed_dict_choice(
|
||||
self, choice: core_schema.TypedDictSchema, source_name: str | None = None
|
||||
) -> list[str | int]:
|
||||
"""This method just extracts the _infer_discriminator_values_for_choice logic specific to TypedDictSchema
|
||||
for the sake of readability.
|
||||
"""
|
||||
source = 'TypedDict' if source_name is None else f'TypedDict {source_name!r}'
|
||||
field = choice['fields'].get(self.discriminator)
|
||||
if field is None:
|
||||
raise PydanticUserError(
|
||||
f'{source} needs a discriminator field for key {self.discriminator!r}', code='discriminator-no-field'
|
||||
)
|
||||
return self._infer_discriminator_values_for_field(field, source)
|
||||
|
||||
def _infer_discriminator_values_for_model_choice(
|
||||
self, choice: core_schema.ModelFieldsSchema, source_name: str | None = None
|
||||
) -> list[str | int]:
|
||||
source = 'ModelFields' if source_name is None else f'Model {source_name!r}'
|
||||
field = choice['fields'].get(self.discriminator)
|
||||
if field is None:
|
||||
raise PydanticUserError(
|
||||
f'{source} needs a discriminator field for key {self.discriminator!r}', code='discriminator-no-field'
|
||||
)
|
||||
return self._infer_discriminator_values_for_field(field, source)
|
||||
|
||||
def _infer_discriminator_values_for_dataclass_choice(
|
||||
self, choice: core_schema.DataclassArgsSchema, source_name: str | None = None
|
||||
) -> list[str | int]:
|
||||
source = 'DataclassArgs' if source_name is None else f'Dataclass {source_name!r}'
|
||||
for field in choice['fields']:
|
||||
if field['name'] == self.discriminator:
|
||||
break
|
||||
else:
|
||||
raise PydanticUserError(
|
||||
f'{source} needs a discriminator field for key {self.discriminator!r}', code='discriminator-no-field'
|
||||
)
|
||||
return self._infer_discriminator_values_for_field(field, source)
|
||||
|
||||
def _infer_discriminator_values_for_field(self, field: CoreSchemaField, source: str) -> list[str | int]:
|
||||
if field['type'] == 'computed-field':
|
||||
# This should never occur as a discriminator, as it is only relevant to serialization
|
||||
return []
|
||||
alias = field.get('validation_alias', self.discriminator)
|
||||
if not isinstance(alias, str):
|
||||
raise PydanticUserError(
|
||||
f'Alias {alias!r} is not supported in a discriminated union', code='discriminator-alias-type'
|
||||
)
|
||||
if self._discriminator_alias is None:
|
||||
self._discriminator_alias = alias
|
||||
elif self._discriminator_alias != alias:
|
||||
raise PydanticUserError(
|
||||
f'Aliases for discriminator {self.discriminator!r} must be the same '
|
||||
f'(got {alias}, {self._discriminator_alias})',
|
||||
code='discriminator-alias',
|
||||
)
|
||||
return self._infer_discriminator_values_for_inner_schema(field['schema'], source)
|
||||
|
||||
def _infer_discriminator_values_for_inner_schema(
|
||||
self, schema: core_schema.CoreSchema, source: str
|
||||
) -> list[str | int]:
|
||||
"""When inferring discriminator values for a field, we typically extract the expected values from a literal
|
||||
schema. This function does that, but also handles nested unions and defaults.
|
||||
"""
|
||||
if schema['type'] == 'literal':
|
||||
return schema['expected']
|
||||
|
||||
elif schema['type'] == 'union':
|
||||
# Generally when multiple values are allowed they should be placed in a single `Literal`, but
|
||||
# we add this case to handle the situation where a field is annotated as a `Union` of `Literal`s.
|
||||
# For example, this lets us handle `Union[Literal['key'], Union[Literal['Key'], Literal['KEY']]]`
|
||||
values: list[Any] = []
|
||||
for choice in schema['choices']:
|
||||
choice_schema = choice[0] if isinstance(choice, tuple) else choice
|
||||
choice_values = self._infer_discriminator_values_for_inner_schema(choice_schema, source)
|
||||
values.extend(choice_values)
|
||||
return values
|
||||
|
||||
elif schema['type'] == 'default':
|
||||
# This will happen if the field has a default value; we ignore it while extracting the discriminator values
|
||||
return self._infer_discriminator_values_for_inner_schema(schema['schema'], source)
|
||||
|
||||
elif schema['type'] == 'function-after':
|
||||
# After validators don't affect the discriminator values
|
||||
return self._infer_discriminator_values_for_inner_schema(schema['schema'], source)
|
||||
|
||||
elif schema['type'] in {'function-before', 'function-wrap', 'function-plain'}:
|
||||
validator_type = repr(schema['type'].split('-')[1])
|
||||
raise PydanticUserError(
|
||||
f'Cannot use a mode={validator_type} validator in the'
|
||||
f' discriminator field {self.discriminator!r} of {source}',
|
||||
code='discriminator-validator',
|
||||
)
|
||||
|
||||
else:
|
||||
raise PydanticUserError(
|
||||
f'{source} needs field {self.discriminator!r} to be of type `Literal`',
|
||||
code='discriminator-needs-literal',
|
||||
)
|
||||
|
||||
def _set_unique_choice_for_values(self, choice: core_schema.CoreSchema, values: Sequence[str | int]) -> None:
|
||||
"""This method updates `self.tagged_union_choices` so that all provided (discriminator) `values` map to the
|
||||
provided `choice`, validating that none of these values already map to another (different) choice.
|
||||
"""
|
||||
for discriminator_value in values:
|
||||
if discriminator_value in self._tagged_union_choices:
|
||||
# It is okay if `value` is already in tagged_union_choices as long as it maps to the same value.
|
||||
# Because tagged_union_choices may map values to other values, we need to walk the choices dict
|
||||
# until we get to a "real" choice, and confirm that is equal to the one assigned.
|
||||
existing_choice = self._tagged_union_choices[discriminator_value]
|
||||
if existing_choice != choice:
|
||||
raise TypeError(
|
||||
f'Value {discriminator_value!r} for discriminator '
|
||||
f'{self.discriminator!r} mapped to multiple choices'
|
||||
)
|
||||
else:
|
||||
self._tagged_union_choices[discriminator_value] = choice
|
@ -0,0 +1,108 @@
|
||||
"""Utilities related to attribute docstring extraction."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import ast
|
||||
import inspect
|
||||
import textwrap
|
||||
from typing import Any
|
||||
|
||||
|
||||
class DocstringVisitor(ast.NodeVisitor):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.target: str | None = None
|
||||
self.attrs: dict[str, str] = {}
|
||||
self.previous_node_type: type[ast.AST] | None = None
|
||||
|
||||
def visit(self, node: ast.AST) -> Any:
|
||||
node_result = super().visit(node)
|
||||
self.previous_node_type = type(node)
|
||||
return node_result
|
||||
|
||||
def visit_AnnAssign(self, node: ast.AnnAssign) -> Any:
|
||||
if isinstance(node.target, ast.Name):
|
||||
self.target = node.target.id
|
||||
|
||||
def visit_Expr(self, node: ast.Expr) -> Any:
|
||||
if (
|
||||
isinstance(node.value, ast.Constant)
|
||||
and isinstance(node.value.value, str)
|
||||
and self.previous_node_type is ast.AnnAssign
|
||||
):
|
||||
docstring = inspect.cleandoc(node.value.value)
|
||||
if self.target:
|
||||
self.attrs[self.target] = docstring
|
||||
self.target = None
|
||||
|
||||
|
||||
def _dedent_source_lines(source: list[str]) -> str:
|
||||
# Required for nested class definitions, e.g. in a function block
|
||||
dedent_source = textwrap.dedent(''.join(source))
|
||||
if dedent_source.startswith((' ', '\t')):
|
||||
# We are in the case where there's a dedented (usually multiline) string
|
||||
# at a lower indentation level than the class itself. We wrap our class
|
||||
# in a function as a workaround.
|
||||
dedent_source = f'def dedent_workaround():\n{dedent_source}'
|
||||
return dedent_source
|
||||
|
||||
|
||||
def _extract_source_from_frame(cls: type[Any]) -> list[str] | None:
|
||||
frame = inspect.currentframe()
|
||||
|
||||
while frame:
|
||||
if inspect.getmodule(frame) is inspect.getmodule(cls):
|
||||
lnum = frame.f_lineno
|
||||
try:
|
||||
lines, _ = inspect.findsource(frame)
|
||||
except OSError: # pragma: no cover
|
||||
# Source can't be retrieved (maybe because running in an interactive terminal),
|
||||
# we don't want to error here.
|
||||
pass
|
||||
else:
|
||||
block_lines = inspect.getblock(lines[lnum - 1 :])
|
||||
dedent_source = _dedent_source_lines(block_lines)
|
||||
try:
|
||||
block_tree = ast.parse(dedent_source)
|
||||
except SyntaxError:
|
||||
pass
|
||||
else:
|
||||
stmt = block_tree.body[0]
|
||||
if isinstance(stmt, ast.FunctionDef) and stmt.name == 'dedent_workaround':
|
||||
# `_dedent_source_lines` wrapped the class around the workaround function
|
||||
stmt = stmt.body[0]
|
||||
if isinstance(stmt, ast.ClassDef) and stmt.name == cls.__name__:
|
||||
return block_lines
|
||||
|
||||
frame = frame.f_back
|
||||
|
||||
|
||||
def extract_docstrings_from_cls(cls: type[Any], use_inspect: bool = False) -> dict[str, str]:
|
||||
"""Map model attributes and their corresponding docstring.
|
||||
|
||||
Args:
|
||||
cls: The class of the Pydantic model to inspect.
|
||||
use_inspect: Whether to skip usage of frames to find the object and use
|
||||
the `inspect` module instead.
|
||||
|
||||
Returns:
|
||||
A mapping containing attribute names and their corresponding docstring.
|
||||
"""
|
||||
if use_inspect:
|
||||
# Might not work as expected if two classes have the same name in the same source file.
|
||||
try:
|
||||
source, _ = inspect.getsourcelines(cls)
|
||||
except OSError: # pragma: no cover
|
||||
return {}
|
||||
else:
|
||||
source = _extract_source_from_frame(cls)
|
||||
|
||||
if not source:
|
||||
return {}
|
||||
|
||||
dedent_source = _dedent_source_lines(source)
|
||||
|
||||
visitor = DocstringVisitor()
|
||||
visitor.visit(ast.parse(dedent_source))
|
||||
return visitor.attrs
|
460
venv/lib/python3.11/site-packages/pydantic/_internal/_fields.py
Normal file
460
venv/lib/python3.11/site-packages/pydantic/_internal/_fields.py
Normal file
@ -0,0 +1,460 @@
|
||||
"""Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import dataclasses
|
||||
import warnings
|
||||
from collections.abc import Mapping
|
||||
from copy import copy
|
||||
from functools import cache
|
||||
from inspect import Parameter, ismethoddescriptor, signature
|
||||
from re import Pattern
|
||||
from typing import TYPE_CHECKING, Any, Callable, TypeVar
|
||||
|
||||
from pydantic_core import PydanticUndefined
|
||||
from typing_extensions import TypeIs, get_origin
|
||||
from typing_inspection import typing_objects
|
||||
from typing_inspection.introspection import AnnotationSource
|
||||
|
||||
from pydantic import PydanticDeprecatedSince211
|
||||
from pydantic.errors import PydanticUserError
|
||||
|
||||
from . import _generics, _typing_extra
|
||||
from ._config import ConfigWrapper
|
||||
from ._docs_extraction import extract_docstrings_from_cls
|
||||
from ._import_utils import import_cached_base_model, import_cached_field_info
|
||||
from ._namespace_utils import NsResolver
|
||||
from ._repr import Representation
|
||||
from ._utils import can_be_positional
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from annotated_types import BaseMetadata
|
||||
|
||||
from ..fields import FieldInfo
|
||||
from ..main import BaseModel
|
||||
from ._dataclasses import StandardDataclass
|
||||
from ._decorators import DecoratorInfos
|
||||
|
||||
|
||||
class PydanticMetadata(Representation):
|
||||
"""Base class for annotation markers like `Strict`."""
|
||||
|
||||
__slots__ = ()
|
||||
|
||||
|
||||
def pydantic_general_metadata(**metadata: Any) -> BaseMetadata:
|
||||
"""Create a new `_PydanticGeneralMetadata` class with the given metadata.
|
||||
|
||||
Args:
|
||||
**metadata: The metadata to add.
|
||||
|
||||
Returns:
|
||||
The new `_PydanticGeneralMetadata` class.
|
||||
"""
|
||||
return _general_metadata_cls()(metadata) # type: ignore
|
||||
|
||||
|
||||
@cache
|
||||
def _general_metadata_cls() -> type[BaseMetadata]:
|
||||
"""Do it this way to avoid importing `annotated_types` at import time."""
|
||||
from annotated_types import BaseMetadata
|
||||
|
||||
class _PydanticGeneralMetadata(PydanticMetadata, BaseMetadata):
|
||||
"""Pydantic general metadata like `max_digits`."""
|
||||
|
||||
def __init__(self, metadata: Any):
|
||||
self.__dict__ = metadata
|
||||
|
||||
return _PydanticGeneralMetadata # type: ignore
|
||||
|
||||
|
||||
def _update_fields_from_docstrings(cls: type[Any], fields: dict[str, FieldInfo], use_inspect: bool = False) -> None:
|
||||
fields_docs = extract_docstrings_from_cls(cls, use_inspect=use_inspect)
|
||||
for ann_name, field_info in fields.items():
|
||||
if field_info.description is None and ann_name in fields_docs:
|
||||
field_info.description = fields_docs[ann_name]
|
||||
|
||||
|
||||
def collect_model_fields( # noqa: C901
|
||||
cls: type[BaseModel],
|
||||
config_wrapper: ConfigWrapper,
|
||||
ns_resolver: NsResolver | None,
|
||||
*,
|
||||
typevars_map: Mapping[TypeVar, Any] | None = None,
|
||||
) -> tuple[dict[str, FieldInfo], set[str]]:
|
||||
"""Collect the fields and class variables names of a nascent Pydantic model.
|
||||
|
||||
The fields collection process is *lenient*, meaning it won't error if string annotations
|
||||
fail to evaluate. If this happens, the original annotation (and assigned value, if any)
|
||||
is stored on the created `FieldInfo` instance.
|
||||
|
||||
The `rebuild_model_fields()` should be called at a later point (e.g. when rebuilding the model),
|
||||
and will make use of these stored attributes.
|
||||
|
||||
Args:
|
||||
cls: BaseModel or dataclass.
|
||||
config_wrapper: The config wrapper instance.
|
||||
ns_resolver: Namespace resolver to use when getting model annotations.
|
||||
typevars_map: A dictionary mapping type variables to their concrete types.
|
||||
|
||||
Returns:
|
||||
A two-tuple containing model fields and class variables names.
|
||||
|
||||
Raises:
|
||||
NameError:
|
||||
- If there is a conflict between a field name and protected namespaces.
|
||||
- If there is a field other than `root` in `RootModel`.
|
||||
- If a field shadows an attribute in the parent model.
|
||||
"""
|
||||
BaseModel = import_cached_base_model()
|
||||
FieldInfo_ = import_cached_field_info()
|
||||
|
||||
bases = cls.__bases__
|
||||
parent_fields_lookup: dict[str, FieldInfo] = {}
|
||||
for base in reversed(bases):
|
||||
if model_fields := getattr(base, '__pydantic_fields__', None):
|
||||
parent_fields_lookup.update(model_fields)
|
||||
|
||||
type_hints = _typing_extra.get_model_type_hints(cls, ns_resolver=ns_resolver)
|
||||
|
||||
# https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older
|
||||
# annotations is only used for finding fields in parent classes
|
||||
annotations = cls.__dict__.get('__annotations__', {})
|
||||
fields: dict[str, FieldInfo] = {}
|
||||
|
||||
class_vars: set[str] = set()
|
||||
for ann_name, (ann_type, evaluated) in type_hints.items():
|
||||
if ann_name == 'model_config':
|
||||
# We never want to treat `model_config` as a field
|
||||
# Note: we may need to change this logic if/when we introduce a `BareModel` class with no
|
||||
# protected namespaces (where `model_config` might be allowed as a field name)
|
||||
continue
|
||||
|
||||
for protected_namespace in config_wrapper.protected_namespaces:
|
||||
ns_violation: bool = False
|
||||
if isinstance(protected_namespace, Pattern):
|
||||
ns_violation = protected_namespace.match(ann_name) is not None
|
||||
elif isinstance(protected_namespace, str):
|
||||
ns_violation = ann_name.startswith(protected_namespace)
|
||||
|
||||
if ns_violation:
|
||||
for b in bases:
|
||||
if hasattr(b, ann_name):
|
||||
if not (issubclass(b, BaseModel) and ann_name in getattr(b, '__pydantic_fields__', {})):
|
||||
raise NameError(
|
||||
f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}'
|
||||
f' of protected namespace "{protected_namespace}".'
|
||||
)
|
||||
else:
|
||||
valid_namespaces = ()
|
||||
for pn in config_wrapper.protected_namespaces:
|
||||
if isinstance(pn, Pattern):
|
||||
if not pn.match(ann_name):
|
||||
valid_namespaces += (f're.compile({pn.pattern})',)
|
||||
else:
|
||||
if not ann_name.startswith(pn):
|
||||
valid_namespaces += (pn,)
|
||||
|
||||
warnings.warn(
|
||||
f'Field "{ann_name}" in {cls.__name__} has conflict with protected namespace "{protected_namespace}".'
|
||||
'\n\nYou may be able to resolve this warning by setting'
|
||||
f" `model_config['protected_namespaces'] = {valid_namespaces}`.",
|
||||
UserWarning,
|
||||
)
|
||||
if _typing_extra.is_classvar_annotation(ann_type):
|
||||
class_vars.add(ann_name)
|
||||
continue
|
||||
|
||||
assigned_value = getattr(cls, ann_name, PydanticUndefined)
|
||||
|
||||
if not is_valid_field_name(ann_name):
|
||||
continue
|
||||
if cls.__pydantic_root_model__ and ann_name != 'root':
|
||||
raise NameError(
|
||||
f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`"
|
||||
)
|
||||
|
||||
# when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get
|
||||
# "... shadows an attribute" warnings
|
||||
generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin')
|
||||
for base in bases:
|
||||
dataclass_fields = {
|
||||
field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ())
|
||||
}
|
||||
if hasattr(base, ann_name):
|
||||
if base is generic_origin:
|
||||
# Don't warn when "shadowing" of attributes in parametrized generics
|
||||
continue
|
||||
|
||||
if ann_name in dataclass_fields:
|
||||
# Don't warn when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set
|
||||
# on the class instance.
|
||||
continue
|
||||
|
||||
if ann_name not in annotations:
|
||||
# Don't warn when a field exists in a parent class but has not been defined in the current class
|
||||
continue
|
||||
|
||||
warnings.warn(
|
||||
f'Field name "{ann_name}" in "{cls.__qualname__}" shadows an attribute in parent '
|
||||
f'"{base.__qualname__}"',
|
||||
UserWarning,
|
||||
)
|
||||
|
||||
if assigned_value is PydanticUndefined: # no assignment, just a plain annotation
|
||||
if ann_name in annotations or ann_name not in parent_fields_lookup:
|
||||
# field is either:
|
||||
# - present in the current model's annotations (and *not* from parent classes)
|
||||
# - not found on any base classes; this seems to be caused by fields bot getting
|
||||
# generated due to models not being fully defined while initializing recursive models.
|
||||
# Nothing stops us from just creating a `FieldInfo` for this type hint, so we do this.
|
||||
field_info = FieldInfo_.from_annotation(ann_type, _source=AnnotationSource.CLASS)
|
||||
if not evaluated:
|
||||
field_info._complete = False
|
||||
# Store the original annotation that should be used to rebuild
|
||||
# the field info later:
|
||||
field_info._original_annotation = ann_type
|
||||
else:
|
||||
# The field was present on one of the (possibly multiple) base classes
|
||||
# copy the field to make sure typevar substitutions don't cause issues with the base classes
|
||||
field_info = copy(parent_fields_lookup[ann_name])
|
||||
|
||||
else: # An assigned value is present (either the default value, or a `Field()` function)
|
||||
_warn_on_nested_alias_in_annotation(ann_type, ann_name)
|
||||
if isinstance(assigned_value, FieldInfo_) and ismethoddescriptor(assigned_value.default):
|
||||
# `assigned_value` was fetched using `getattr`, which triggers a call to `__get__`
|
||||
# for descriptors, so we do the same if the `= field(default=...)` form is used.
|
||||
# Note that we only do this for method descriptors for now, we might want to
|
||||
# extend this to any descriptor in the future (by simply checking for
|
||||
# `hasattr(assigned_value.default, '__get__')`).
|
||||
assigned_value.default = assigned_value.default.__get__(None, cls)
|
||||
|
||||
# The `from_annotated_attribute()` call below mutates the assigned `Field()`, so make a copy:
|
||||
original_assignment = (
|
||||
copy(assigned_value) if not evaluated and isinstance(assigned_value, FieldInfo_) else assigned_value
|
||||
)
|
||||
|
||||
field_info = FieldInfo_.from_annotated_attribute(ann_type, assigned_value, _source=AnnotationSource.CLASS)
|
||||
if not evaluated:
|
||||
field_info._complete = False
|
||||
# Store the original annotation and assignment value that should be used to rebuild
|
||||
# the field info later:
|
||||
field_info._original_annotation = ann_type
|
||||
field_info._original_assignment = original_assignment
|
||||
elif 'final' in field_info._qualifiers and not field_info.is_required():
|
||||
warnings.warn(
|
||||
f'Annotation {ann_name!r} is marked as final and has a default value. Pydantic treats {ann_name!r} as a '
|
||||
'class variable, but it will be considered as a normal field in V3 to be aligned with dataclasses. If you '
|
||||
f'still want {ann_name!r} to be considered as a class variable, annotate it as: `ClassVar[<type>] = <default>.`',
|
||||
category=PydanticDeprecatedSince211,
|
||||
# Incorrect when `create_model` is used, but the chance that final with a default is used is low in that case:
|
||||
stacklevel=4,
|
||||
)
|
||||
class_vars.add(ann_name)
|
||||
continue
|
||||
|
||||
# attributes which are fields are removed from the class namespace:
|
||||
# 1. To match the behaviour of annotation-only fields
|
||||
# 2. To avoid false positives in the NameError check above
|
||||
try:
|
||||
delattr(cls, ann_name)
|
||||
except AttributeError:
|
||||
pass # indicates the attribute was on a parent class
|
||||
|
||||
# Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__
|
||||
# to make sure the decorators have already been built for this exact class
|
||||
decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__']
|
||||
if ann_name in decorators.computed_fields:
|
||||
raise TypeError(
|
||||
f'Field {ann_name!r} of class {cls.__name__!r} overrides symbol of same name in a parent class. '
|
||||
'This override with a computed_field is incompatible.'
|
||||
)
|
||||
fields[ann_name] = field_info
|
||||
|
||||
if typevars_map:
|
||||
for field in fields.values():
|
||||
if field._complete:
|
||||
field.apply_typevars_map(typevars_map)
|
||||
|
||||
if config_wrapper.use_attribute_docstrings:
|
||||
_update_fields_from_docstrings(cls, fields)
|
||||
return fields, class_vars
|
||||
|
||||
|
||||
def _warn_on_nested_alias_in_annotation(ann_type: type[Any], ann_name: str) -> None:
|
||||
FieldInfo = import_cached_field_info()
|
||||
|
||||
args = getattr(ann_type, '__args__', None)
|
||||
if args:
|
||||
for anno_arg in args:
|
||||
if typing_objects.is_annotated(get_origin(anno_arg)):
|
||||
for anno_type_arg in _typing_extra.get_args(anno_arg):
|
||||
if isinstance(anno_type_arg, FieldInfo) and anno_type_arg.alias is not None:
|
||||
warnings.warn(
|
||||
f'`alias` specification on field "{ann_name}" must be set on outermost annotation to take effect.',
|
||||
UserWarning,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
def rebuild_model_fields(
|
||||
cls: type[BaseModel],
|
||||
*,
|
||||
ns_resolver: NsResolver,
|
||||
typevars_map: Mapping[TypeVar, Any],
|
||||
) -> dict[str, FieldInfo]:
|
||||
"""Rebuild the (already present) model fields by trying to reevaluate annotations.
|
||||
|
||||
This function should be called whenever a model with incomplete fields is encountered.
|
||||
|
||||
Note:
|
||||
This function *doesn't* mutate the model fields in place, as it can be called during
|
||||
schema generation, where you don't want to mutate other model's fields.
|
||||
"""
|
||||
FieldInfo_ = import_cached_field_info()
|
||||
|
||||
rebuilt_fields: dict[str, FieldInfo] = {}
|
||||
with ns_resolver.push(cls):
|
||||
for f_name, field_info in cls.__pydantic_fields__.items():
|
||||
if field_info._complete:
|
||||
rebuilt_fields[f_name] = field_info
|
||||
else:
|
||||
existing_desc = field_info.description
|
||||
ann = _typing_extra.eval_type(
|
||||
field_info._original_annotation,
|
||||
*ns_resolver.types_namespace,
|
||||
)
|
||||
ann = _generics.replace_types(ann, typevars_map)
|
||||
|
||||
if (assign := field_info._original_assignment) is PydanticUndefined:
|
||||
new_field = FieldInfo_.from_annotation(ann, _source=AnnotationSource.CLASS)
|
||||
else:
|
||||
new_field = FieldInfo_.from_annotated_attribute(ann, assign, _source=AnnotationSource.CLASS)
|
||||
# The description might come from the docstring if `use_attribute_docstrings` was `True`:
|
||||
new_field.description = new_field.description if new_field.description is not None else existing_desc
|
||||
rebuilt_fields[f_name] = new_field
|
||||
|
||||
return rebuilt_fields
|
||||
|
||||
|
||||
def collect_dataclass_fields(
|
||||
cls: type[StandardDataclass],
|
||||
*,
|
||||
ns_resolver: NsResolver | None = None,
|
||||
typevars_map: dict[Any, Any] | None = None,
|
||||
config_wrapper: ConfigWrapper | None = None,
|
||||
) -> dict[str, FieldInfo]:
|
||||
"""Collect the fields of a dataclass.
|
||||
|
||||
Args:
|
||||
cls: dataclass.
|
||||
ns_resolver: Namespace resolver to use when getting dataclass annotations.
|
||||
Defaults to an empty instance.
|
||||
typevars_map: A dictionary mapping type variables to their concrete types.
|
||||
config_wrapper: The config wrapper instance.
|
||||
|
||||
Returns:
|
||||
The dataclass fields.
|
||||
"""
|
||||
FieldInfo_ = import_cached_field_info()
|
||||
|
||||
fields: dict[str, FieldInfo] = {}
|
||||
ns_resolver = ns_resolver or NsResolver()
|
||||
dataclass_fields = cls.__dataclass_fields__
|
||||
|
||||
# The logic here is similar to `_typing_extra.get_cls_type_hints`,
|
||||
# although we do it manually as stdlib dataclasses already have annotations
|
||||
# collected in each class:
|
||||
for base in reversed(cls.__mro__):
|
||||
if not dataclasses.is_dataclass(base):
|
||||
continue
|
||||
|
||||
with ns_resolver.push(base):
|
||||
for ann_name, dataclass_field in dataclass_fields.items():
|
||||
if ann_name not in base.__dict__.get('__annotations__', {}):
|
||||
# `__dataclass_fields__`contains every field, even the ones from base classes.
|
||||
# Only collect the ones defined on `base`.
|
||||
continue
|
||||
|
||||
globalns, localns = ns_resolver.types_namespace
|
||||
ann_type, _ = _typing_extra.try_eval_type(dataclass_field.type, globalns, localns)
|
||||
|
||||
if _typing_extra.is_classvar_annotation(ann_type):
|
||||
continue
|
||||
|
||||
if (
|
||||
not dataclass_field.init
|
||||
and dataclass_field.default is dataclasses.MISSING
|
||||
and dataclass_field.default_factory is dataclasses.MISSING
|
||||
):
|
||||
# TODO: We should probably do something with this so that validate_assignment behaves properly
|
||||
# Issue: https://github.com/pydantic/pydantic/issues/5470
|
||||
continue
|
||||
|
||||
if isinstance(dataclass_field.default, FieldInfo_):
|
||||
if dataclass_field.default.init_var:
|
||||
if dataclass_field.default.init is False:
|
||||
raise PydanticUserError(
|
||||
f'Dataclass field {ann_name} has init=False and init_var=True, but these are mutually exclusive.',
|
||||
code='clashing-init-and-init-var',
|
||||
)
|
||||
|
||||
# TODO: same note as above re validate_assignment
|
||||
continue
|
||||
field_info = FieldInfo_.from_annotated_attribute(
|
||||
ann_type, dataclass_field.default, _source=AnnotationSource.DATACLASS
|
||||
)
|
||||
else:
|
||||
field_info = FieldInfo_.from_annotated_attribute(
|
||||
ann_type, dataclass_field, _source=AnnotationSource.DATACLASS
|
||||
)
|
||||
|
||||
fields[ann_name] = field_info
|
||||
|
||||
if field_info.default is not PydanticUndefined and isinstance(
|
||||
getattr(cls, ann_name, field_info), FieldInfo_
|
||||
):
|
||||
# We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo
|
||||
setattr(cls, ann_name, field_info.default)
|
||||
|
||||
if typevars_map:
|
||||
for field in fields.values():
|
||||
# We don't pass any ns, as `field.annotation`
|
||||
# was already evaluated. TODO: is this method relevant?
|
||||
# Can't we juste use `_generics.replace_types`?
|
||||
field.apply_typevars_map(typevars_map)
|
||||
|
||||
if config_wrapper is not None and config_wrapper.use_attribute_docstrings:
|
||||
_update_fields_from_docstrings(
|
||||
cls,
|
||||
fields,
|
||||
# We can't rely on the (more reliable) frame inspection method
|
||||
# for stdlib dataclasses:
|
||||
use_inspect=not hasattr(cls, '__is_pydantic_dataclass__'),
|
||||
)
|
||||
|
||||
return fields
|
||||
|
||||
|
||||
def is_valid_field_name(name: str) -> bool:
|
||||
return not name.startswith('_')
|
||||
|
||||
|
||||
def is_valid_privateattr_name(name: str) -> bool:
|
||||
return name.startswith('_') and not name.startswith('__')
|
||||
|
||||
|
||||
def takes_validated_data_argument(
|
||||
default_factory: Callable[[], Any] | Callable[[dict[str, Any]], Any],
|
||||
) -> TypeIs[Callable[[dict[str, Any]], Any]]:
|
||||
"""Whether the provided default factory callable has a validated data parameter."""
|
||||
try:
|
||||
sig = signature(default_factory)
|
||||
except (ValueError, TypeError):
|
||||
# `inspect.signature` might not be able to infer a signature, e.g. with C objects.
|
||||
# In this case, we assume no data argument is present:
|
||||
return False
|
||||
|
||||
parameters = list(sig.parameters.values())
|
||||
|
||||
return len(parameters) == 1 and can_be_positional(parameters[0]) and parameters[0].default is Parameter.empty
|
@ -0,0 +1,23 @@
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Union
|
||||
|
||||
|
||||
@dataclass
|
||||
class PydanticRecursiveRef:
|
||||
type_ref: str
|
||||
|
||||
__name__ = 'PydanticRecursiveRef'
|
||||
__hash__ = object.__hash__
|
||||
|
||||
def __call__(self) -> None:
|
||||
"""Defining __call__ is necessary for the `typing` module to let you use an instance of
|
||||
this class as the result of resolving a standard ForwardRef.
|
||||
"""
|
||||
|
||||
def __or__(self, other):
|
||||
return Union[self, other] # type: ignore
|
||||
|
||||
def __ror__(self, other):
|
||||
return Union[other, self] # type: ignore
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,547 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
import types
|
||||
import typing
|
||||
from collections import ChainMap
|
||||
from collections.abc import Iterator, Mapping
|
||||
from contextlib import contextmanager
|
||||
from contextvars import ContextVar
|
||||
from itertools import zip_longest
|
||||
from types import prepare_class
|
||||
from typing import TYPE_CHECKING, Annotated, Any, TypeVar
|
||||
from weakref import WeakValueDictionary
|
||||
|
||||
import typing_extensions
|
||||
from typing_inspection import typing_objects
|
||||
from typing_inspection.introspection import is_union_origin
|
||||
|
||||
from . import _typing_extra
|
||||
from ._core_utils import get_type_ref
|
||||
from ._forward_ref import PydanticRecursiveRef
|
||||
from ._utils import all_identical, is_model_class
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
from typing import _UnionGenericAlias # type: ignore[attr-defined]
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..main import BaseModel
|
||||
|
||||
GenericTypesCacheKey = tuple[Any, Any, tuple[Any, ...]]
|
||||
|
||||
# Note: We want to remove LimitedDict, but to do this, we'd need to improve the handling of generics caching.
|
||||
# Right now, to handle recursive generics, we some types must remain cached for brief periods without references.
|
||||
# By chaining the WeakValuesDict with a LimitedDict, we have a way to retain caching for all types with references,
|
||||
# while also retaining a limited number of types even without references. This is generally enough to build
|
||||
# specific recursive generic models without losing required items out of the cache.
|
||||
|
||||
KT = TypeVar('KT')
|
||||
VT = TypeVar('VT')
|
||||
_LIMITED_DICT_SIZE = 100
|
||||
|
||||
|
||||
class LimitedDict(dict[KT, VT]):
|
||||
def __init__(self, size_limit: int = _LIMITED_DICT_SIZE) -> None:
|
||||
self.size_limit = size_limit
|
||||
super().__init__()
|
||||
|
||||
def __setitem__(self, key: KT, value: VT, /) -> None:
|
||||
super().__setitem__(key, value)
|
||||
if len(self) > self.size_limit:
|
||||
excess = len(self) - self.size_limit + self.size_limit // 10
|
||||
to_remove = list(self.keys())[:excess]
|
||||
for k in to_remove:
|
||||
del self[k]
|
||||
|
||||
|
||||
# weak dictionaries allow the dynamically created parametrized versions of generic models to get collected
|
||||
# once they are no longer referenced by the caller.
|
||||
GenericTypesCache = WeakValueDictionary[GenericTypesCacheKey, 'type[BaseModel]']
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
||||
class DeepChainMap(ChainMap[KT, VT]): # type: ignore
|
||||
...
|
||||
|
||||
else:
|
||||
|
||||
class DeepChainMap(ChainMap):
|
||||
"""Variant of ChainMap that allows direct updates to inner scopes.
|
||||
|
||||
Taken from https://docs.python.org/3/library/collections.html#collections.ChainMap,
|
||||
with some light modifications for this use case.
|
||||
"""
|
||||
|
||||
def clear(self) -> None:
|
||||
for mapping in self.maps:
|
||||
mapping.clear()
|
||||
|
||||
def __setitem__(self, key: KT, value: VT) -> None:
|
||||
for mapping in self.maps:
|
||||
mapping[key] = value
|
||||
|
||||
def __delitem__(self, key: KT) -> None:
|
||||
hit = False
|
||||
for mapping in self.maps:
|
||||
if key in mapping:
|
||||
del mapping[key]
|
||||
hit = True
|
||||
if not hit:
|
||||
raise KeyError(key)
|
||||
|
||||
|
||||
# Despite the fact that LimitedDict _seems_ no longer necessary, I'm very nervous to actually remove it
|
||||
# and discover later on that we need to re-add all this infrastructure...
|
||||
# _GENERIC_TYPES_CACHE = DeepChainMap(GenericTypesCache(), LimitedDict())
|
||||
|
||||
_GENERIC_TYPES_CACHE: ContextVar[GenericTypesCache | None] = ContextVar('_GENERIC_TYPES_CACHE', default=None)
|
||||
|
||||
|
||||
class PydanticGenericMetadata(typing_extensions.TypedDict):
|
||||
origin: type[BaseModel] | None # analogous to typing._GenericAlias.__origin__
|
||||
args: tuple[Any, ...] # analogous to typing._GenericAlias.__args__
|
||||
parameters: tuple[TypeVar, ...] # analogous to typing.Generic.__parameters__
|
||||
|
||||
|
||||
def create_generic_submodel(
|
||||
model_name: str, origin: type[BaseModel], args: tuple[Any, ...], params: tuple[Any, ...]
|
||||
) -> type[BaseModel]:
|
||||
"""Dynamically create a submodel of a provided (generic) BaseModel.
|
||||
|
||||
This is used when producing concrete parametrizations of generic models. This function
|
||||
only *creates* the new subclass; the schema/validators/serialization must be updated to
|
||||
reflect a concrete parametrization elsewhere.
|
||||
|
||||
Args:
|
||||
model_name: The name of the newly created model.
|
||||
origin: The base class for the new model to inherit from.
|
||||
args: A tuple of generic metadata arguments.
|
||||
params: A tuple of generic metadata parameters.
|
||||
|
||||
Returns:
|
||||
The created submodel.
|
||||
"""
|
||||
namespace: dict[str, Any] = {'__module__': origin.__module__}
|
||||
bases = (origin,)
|
||||
meta, ns, kwds = prepare_class(model_name, bases)
|
||||
namespace.update(ns)
|
||||
created_model = meta(
|
||||
model_name,
|
||||
bases,
|
||||
namespace,
|
||||
__pydantic_generic_metadata__={
|
||||
'origin': origin,
|
||||
'args': args,
|
||||
'parameters': params,
|
||||
},
|
||||
__pydantic_reset_parent_namespace__=False,
|
||||
**kwds,
|
||||
)
|
||||
|
||||
model_module, called_globally = _get_caller_frame_info(depth=3)
|
||||
if called_globally: # create global reference and therefore allow pickling
|
||||
object_by_reference = None
|
||||
reference_name = model_name
|
||||
reference_module_globals = sys.modules[created_model.__module__].__dict__
|
||||
while object_by_reference is not created_model:
|
||||
object_by_reference = reference_module_globals.setdefault(reference_name, created_model)
|
||||
reference_name += '_'
|
||||
|
||||
return created_model
|
||||
|
||||
|
||||
def _get_caller_frame_info(depth: int = 2) -> tuple[str | None, bool]:
|
||||
"""Used inside a function to check whether it was called globally.
|
||||
|
||||
Args:
|
||||
depth: The depth to get the frame.
|
||||
|
||||
Returns:
|
||||
A tuple contains `module_name` and `called_globally`.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the function is not called inside a function.
|
||||
"""
|
||||
try:
|
||||
previous_caller_frame = sys._getframe(depth)
|
||||
except ValueError as e:
|
||||
raise RuntimeError('This function must be used inside another function') from e
|
||||
except AttributeError: # sys module does not have _getframe function, so there's nothing we can do about it
|
||||
return None, False
|
||||
frame_globals = previous_caller_frame.f_globals
|
||||
return frame_globals.get('__name__'), previous_caller_frame.f_locals is frame_globals
|
||||
|
||||
|
||||
DictValues: type[Any] = {}.values().__class__
|
||||
|
||||
|
||||
def iter_contained_typevars(v: Any) -> Iterator[TypeVar]:
|
||||
"""Recursively iterate through all subtypes and type args of `v` and yield any typevars that are found.
|
||||
|
||||
This is inspired as an alternative to directly accessing the `__parameters__` attribute of a GenericAlias,
|
||||
since __parameters__ of (nested) generic BaseModel subclasses won't show up in that list.
|
||||
"""
|
||||
if isinstance(v, TypeVar):
|
||||
yield v
|
||||
elif is_model_class(v):
|
||||
yield from v.__pydantic_generic_metadata__['parameters']
|
||||
elif isinstance(v, (DictValues, list)):
|
||||
for var in v:
|
||||
yield from iter_contained_typevars(var)
|
||||
else:
|
||||
args = get_args(v)
|
||||
for arg in args:
|
||||
yield from iter_contained_typevars(arg)
|
||||
|
||||
|
||||
def get_args(v: Any) -> Any:
|
||||
pydantic_generic_metadata: PydanticGenericMetadata | None = getattr(v, '__pydantic_generic_metadata__', None)
|
||||
if pydantic_generic_metadata:
|
||||
return pydantic_generic_metadata.get('args')
|
||||
return typing_extensions.get_args(v)
|
||||
|
||||
|
||||
def get_origin(v: Any) -> Any:
|
||||
pydantic_generic_metadata: PydanticGenericMetadata | None = getattr(v, '__pydantic_generic_metadata__', None)
|
||||
if pydantic_generic_metadata:
|
||||
return pydantic_generic_metadata.get('origin')
|
||||
return typing_extensions.get_origin(v)
|
||||
|
||||
|
||||
def get_standard_typevars_map(cls: Any) -> dict[TypeVar, Any] | None:
|
||||
"""Package a generic type's typevars and parametrization (if present) into a dictionary compatible with the
|
||||
`replace_types` function. Specifically, this works with standard typing generics and typing._GenericAlias.
|
||||
"""
|
||||
origin = get_origin(cls)
|
||||
if origin is None:
|
||||
return None
|
||||
if not hasattr(origin, '__parameters__'):
|
||||
return None
|
||||
|
||||
# In this case, we know that cls is a _GenericAlias, and origin is the generic type
|
||||
# So it is safe to access cls.__args__ and origin.__parameters__
|
||||
args: tuple[Any, ...] = cls.__args__ # type: ignore
|
||||
parameters: tuple[TypeVar, ...] = origin.__parameters__
|
||||
return dict(zip(parameters, args))
|
||||
|
||||
|
||||
def get_model_typevars_map(cls: type[BaseModel]) -> dict[TypeVar, Any]:
|
||||
"""Package a generic BaseModel's typevars and concrete parametrization (if present) into a dictionary compatible
|
||||
with the `replace_types` function.
|
||||
|
||||
Since BaseModel.__class_getitem__ does not produce a typing._GenericAlias, and the BaseModel generic info is
|
||||
stored in the __pydantic_generic_metadata__ attribute, we need special handling here.
|
||||
"""
|
||||
# TODO: This could be unified with `get_standard_typevars_map` if we stored the generic metadata
|
||||
# in the __origin__, __args__, and __parameters__ attributes of the model.
|
||||
generic_metadata = cls.__pydantic_generic_metadata__
|
||||
origin = generic_metadata['origin']
|
||||
args = generic_metadata['args']
|
||||
if not args:
|
||||
# No need to go into `iter_contained_typevars`:
|
||||
return {}
|
||||
return dict(zip(iter_contained_typevars(origin), args))
|
||||
|
||||
|
||||
def replace_types(type_: Any, type_map: Mapping[TypeVar, Any] | None) -> Any:
|
||||
"""Return type with all occurrences of `type_map` keys recursively replaced with their values.
|
||||
|
||||
Args:
|
||||
type_: The class or generic alias.
|
||||
type_map: Mapping from `TypeVar` instance to concrete types.
|
||||
|
||||
Returns:
|
||||
A new type representing the basic structure of `type_` with all
|
||||
`typevar_map` keys recursively replaced.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from typing import List, Union
|
||||
|
||||
from pydantic._internal._generics import replace_types
|
||||
|
||||
replace_types(tuple[str, Union[List[str], float]], {str: int})
|
||||
#> tuple[int, Union[List[int], float]]
|
||||
```
|
||||
"""
|
||||
if not type_map:
|
||||
return type_
|
||||
|
||||
type_args = get_args(type_)
|
||||
origin_type = get_origin(type_)
|
||||
|
||||
if typing_objects.is_annotated(origin_type):
|
||||
annotated_type, *annotations = type_args
|
||||
annotated_type = replace_types(annotated_type, type_map)
|
||||
# TODO remove parentheses when we drop support for Python 3.10:
|
||||
return Annotated[(annotated_type, *annotations)]
|
||||
|
||||
# Having type args is a good indicator that this is a typing special form
|
||||
# instance or a generic alias of some sort.
|
||||
if type_args:
|
||||
resolved_type_args = tuple(replace_types(arg, type_map) for arg in type_args)
|
||||
if all_identical(type_args, resolved_type_args):
|
||||
# If all arguments are the same, there is no need to modify the
|
||||
# type or create a new object at all
|
||||
return type_
|
||||
|
||||
if (
|
||||
origin_type is not None
|
||||
and isinstance(type_, _typing_extra.typing_base)
|
||||
and not isinstance(origin_type, _typing_extra.typing_base)
|
||||
and getattr(type_, '_name', None) is not None
|
||||
):
|
||||
# In python < 3.9 generic aliases don't exist so any of these like `list`,
|
||||
# `type` or `collections.abc.Callable` need to be translated.
|
||||
# See: https://www.python.org/dev/peps/pep-0585
|
||||
origin_type = getattr(typing, type_._name)
|
||||
assert origin_type is not None
|
||||
|
||||
if is_union_origin(origin_type):
|
||||
if any(typing_objects.is_any(arg) for arg in resolved_type_args):
|
||||
# `Any | T` ~ `Any`:
|
||||
resolved_type_args = (Any,)
|
||||
# `Never | T` ~ `T`:
|
||||
resolved_type_args = tuple(
|
||||
arg
|
||||
for arg in resolved_type_args
|
||||
if not (typing_objects.is_noreturn(arg) or typing_objects.is_never(arg))
|
||||
)
|
||||
|
||||
# PEP-604 syntax (Ex.: list | str) is represented with a types.UnionType object that does not have __getitem__.
|
||||
# We also cannot use isinstance() since we have to compare types.
|
||||
if sys.version_info >= (3, 10) and origin_type is types.UnionType:
|
||||
return _UnionGenericAlias(origin_type, resolved_type_args)
|
||||
# NotRequired[T] and Required[T] don't support tuple type resolved_type_args, hence the condition below
|
||||
return origin_type[resolved_type_args[0] if len(resolved_type_args) == 1 else resolved_type_args]
|
||||
|
||||
# We handle pydantic generic models separately as they don't have the same
|
||||
# semantics as "typing" classes or generic aliases
|
||||
|
||||
if not origin_type and is_model_class(type_):
|
||||
parameters = type_.__pydantic_generic_metadata__['parameters']
|
||||
if not parameters:
|
||||
return type_
|
||||
resolved_type_args = tuple(replace_types(t, type_map) for t in parameters)
|
||||
if all_identical(parameters, resolved_type_args):
|
||||
return type_
|
||||
return type_[resolved_type_args]
|
||||
|
||||
# Handle special case for typehints that can have lists as arguments.
|
||||
# `typing.Callable[[int, str], int]` is an example for this.
|
||||
if isinstance(type_, list):
|
||||
resolved_list = [replace_types(element, type_map) for element in type_]
|
||||
if all_identical(type_, resolved_list):
|
||||
return type_
|
||||
return resolved_list
|
||||
|
||||
# If all else fails, we try to resolve the type directly and otherwise just
|
||||
# return the input with no modifications.
|
||||
return type_map.get(type_, type_)
|
||||
|
||||
|
||||
def map_generic_model_arguments(cls: type[BaseModel], args: tuple[Any, ...]) -> dict[TypeVar, Any]:
|
||||
"""Return a mapping between the parameters of a generic model and the provided arguments during parameterization.
|
||||
|
||||
Raises:
|
||||
TypeError: If the number of arguments does not match the parameters (i.e. if providing too few or too many arguments).
|
||||
|
||||
Example:
|
||||
```python {test="skip" lint="skip"}
|
||||
class Model[T, U, V = int](BaseModel): ...
|
||||
|
||||
map_generic_model_arguments(Model, (str, bytes))
|
||||
#> {T: str, U: bytes, V: int}
|
||||
|
||||
map_generic_model_arguments(Model, (str,))
|
||||
#> TypeError: Too few arguments for <class '__main__.Model'>; actual 1, expected at least 2
|
||||
|
||||
map_generic_model_arguments(Model, (str, bytes, int, complex))
|
||||
#> TypeError: Too many arguments for <class '__main__.Model'>; actual 4, expected 3
|
||||
```
|
||||
|
||||
Note:
|
||||
This function is analogous to the private `typing._check_generic_specialization` function.
|
||||
"""
|
||||
parameters = cls.__pydantic_generic_metadata__['parameters']
|
||||
expected_len = len(parameters)
|
||||
typevars_map: dict[TypeVar, Any] = {}
|
||||
|
||||
_missing = object()
|
||||
for parameter, argument in zip_longest(parameters, args, fillvalue=_missing):
|
||||
if parameter is _missing:
|
||||
raise TypeError(f'Too many arguments for {cls}; actual {len(args)}, expected {expected_len}')
|
||||
|
||||
if argument is _missing:
|
||||
param = typing.cast(TypeVar, parameter)
|
||||
try:
|
||||
has_default = param.has_default()
|
||||
except AttributeError:
|
||||
# Happens if using `typing.TypeVar` (and not `typing_extensions`) on Python < 3.13.
|
||||
has_default = False
|
||||
if has_default:
|
||||
# The default might refer to other type parameters. For an example, see:
|
||||
# https://typing.readthedocs.io/en/latest/spec/generics.html#type-parameters-as-parameters-to-generics
|
||||
typevars_map[param] = replace_types(param.__default__, typevars_map)
|
||||
else:
|
||||
expected_len -= sum(hasattr(p, 'has_default') and p.has_default() for p in parameters)
|
||||
raise TypeError(f'Too few arguments for {cls}; actual {len(args)}, expected at least {expected_len}')
|
||||
else:
|
||||
param = typing.cast(TypeVar, parameter)
|
||||
typevars_map[param] = argument
|
||||
|
||||
return typevars_map
|
||||
|
||||
|
||||
_generic_recursion_cache: ContextVar[set[str] | None] = ContextVar('_generic_recursion_cache', default=None)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def generic_recursion_self_type(
|
||||
origin: type[BaseModel], args: tuple[Any, ...]
|
||||
) -> Iterator[PydanticRecursiveRef | None]:
|
||||
"""This contextmanager should be placed around the recursive calls used to build a generic type,
|
||||
and accept as arguments the generic origin type and the type arguments being passed to it.
|
||||
|
||||
If the same origin and arguments are observed twice, it implies that a self-reference placeholder
|
||||
can be used while building the core schema, and will produce a schema_ref that will be valid in the
|
||||
final parent schema.
|
||||
"""
|
||||
previously_seen_type_refs = _generic_recursion_cache.get()
|
||||
if previously_seen_type_refs is None:
|
||||
previously_seen_type_refs = set()
|
||||
token = _generic_recursion_cache.set(previously_seen_type_refs)
|
||||
else:
|
||||
token = None
|
||||
|
||||
try:
|
||||
type_ref = get_type_ref(origin, args_override=args)
|
||||
if type_ref in previously_seen_type_refs:
|
||||
self_type = PydanticRecursiveRef(type_ref=type_ref)
|
||||
yield self_type
|
||||
else:
|
||||
previously_seen_type_refs.add(type_ref)
|
||||
yield
|
||||
previously_seen_type_refs.remove(type_ref)
|
||||
finally:
|
||||
if token:
|
||||
_generic_recursion_cache.reset(token)
|
||||
|
||||
|
||||
def recursively_defined_type_refs() -> set[str]:
|
||||
visited = _generic_recursion_cache.get()
|
||||
if not visited:
|
||||
return set() # not in a generic recursion, so there are no types
|
||||
|
||||
return visited.copy() # don't allow modifications
|
||||
|
||||
|
||||
def get_cached_generic_type_early(parent: type[BaseModel], typevar_values: Any) -> type[BaseModel] | None:
|
||||
"""The use of a two-stage cache lookup approach was necessary to have the highest performance possible for
|
||||
repeated calls to `__class_getitem__` on generic types (which may happen in tighter loops during runtime),
|
||||
while still ensuring that certain alternative parametrizations ultimately resolve to the same type.
|
||||
|
||||
As a concrete example, this approach was necessary to make Model[List[T]][int] equal to Model[List[int]].
|
||||
The approach could be modified to not use two different cache keys at different points, but the
|
||||
_early_cache_key is optimized to be as quick to compute as possible (for repeated-access speed), and the
|
||||
_late_cache_key is optimized to be as "correct" as possible, so that two types that will ultimately be the
|
||||
same after resolving the type arguments will always produce cache hits.
|
||||
|
||||
If we wanted to move to only using a single cache key per type, we would either need to always use the
|
||||
slower/more computationally intensive logic associated with _late_cache_key, or would need to accept
|
||||
that Model[List[T]][int] is a different type than Model[List[T]][int]. Because we rely on subclass relationships
|
||||
during validation, I think it is worthwhile to ensure that types that are functionally equivalent are actually
|
||||
equal.
|
||||
"""
|
||||
generic_types_cache = _GENERIC_TYPES_CACHE.get()
|
||||
if generic_types_cache is None:
|
||||
generic_types_cache = GenericTypesCache()
|
||||
_GENERIC_TYPES_CACHE.set(generic_types_cache)
|
||||
return generic_types_cache.get(_early_cache_key(parent, typevar_values))
|
||||
|
||||
|
||||
def get_cached_generic_type_late(
|
||||
parent: type[BaseModel], typevar_values: Any, origin: type[BaseModel], args: tuple[Any, ...]
|
||||
) -> type[BaseModel] | None:
|
||||
"""See the docstring of `get_cached_generic_type_early` for more information about the two-stage cache lookup."""
|
||||
generic_types_cache = _GENERIC_TYPES_CACHE.get()
|
||||
if (
|
||||
generic_types_cache is None
|
||||
): # pragma: no cover (early cache is guaranteed to run first and initialize the cache)
|
||||
generic_types_cache = GenericTypesCache()
|
||||
_GENERIC_TYPES_CACHE.set(generic_types_cache)
|
||||
cached = generic_types_cache.get(_late_cache_key(origin, args, typevar_values))
|
||||
if cached is not None:
|
||||
set_cached_generic_type(parent, typevar_values, cached, origin, args)
|
||||
return cached
|
||||
|
||||
|
||||
def set_cached_generic_type(
|
||||
parent: type[BaseModel],
|
||||
typevar_values: tuple[Any, ...],
|
||||
type_: type[BaseModel],
|
||||
origin: type[BaseModel] | None = None,
|
||||
args: tuple[Any, ...] | None = None,
|
||||
) -> None:
|
||||
"""See the docstring of `get_cached_generic_type_early` for more information about why items are cached with
|
||||
two different keys.
|
||||
"""
|
||||
generic_types_cache = _GENERIC_TYPES_CACHE.get()
|
||||
if (
|
||||
generic_types_cache is None
|
||||
): # pragma: no cover (cache lookup is guaranteed to run first and initialize the cache)
|
||||
generic_types_cache = GenericTypesCache()
|
||||
_GENERIC_TYPES_CACHE.set(generic_types_cache)
|
||||
generic_types_cache[_early_cache_key(parent, typevar_values)] = type_
|
||||
if len(typevar_values) == 1:
|
||||
generic_types_cache[_early_cache_key(parent, typevar_values[0])] = type_
|
||||
if origin and args:
|
||||
generic_types_cache[_late_cache_key(origin, args, typevar_values)] = type_
|
||||
|
||||
|
||||
def _union_orderings_key(typevar_values: Any) -> Any:
|
||||
"""This is intended to help differentiate between Union types with the same arguments in different order.
|
||||
|
||||
Thanks to caching internal to the `typing` module, it is not possible to distinguish between
|
||||
List[Union[int, float]] and List[Union[float, int]] (and similarly for other "parent" origins besides List)
|
||||
because `typing` considers Union[int, float] to be equal to Union[float, int].
|
||||
|
||||
However, you _can_ distinguish between (top-level) Union[int, float] vs. Union[float, int].
|
||||
Because we parse items as the first Union type that is successful, we get slightly more consistent behavior
|
||||
if we make an effort to distinguish the ordering of items in a union. It would be best if we could _always_
|
||||
get the exact-correct order of items in the union, but that would require a change to the `typing` module itself.
|
||||
(See https://github.com/python/cpython/issues/86483 for reference.)
|
||||
"""
|
||||
if isinstance(typevar_values, tuple):
|
||||
args_data = []
|
||||
for value in typevar_values:
|
||||
args_data.append(_union_orderings_key(value))
|
||||
return tuple(args_data)
|
||||
elif typing_objects.is_union(typing_extensions.get_origin(typevar_values)):
|
||||
return get_args(typevar_values)
|
||||
else:
|
||||
return ()
|
||||
|
||||
|
||||
def _early_cache_key(cls: type[BaseModel], typevar_values: Any) -> GenericTypesCacheKey:
|
||||
"""This is intended for minimal computational overhead during lookups of cached types.
|
||||
|
||||
Note that this is overly simplistic, and it's possible that two different cls/typevar_values
|
||||
inputs would ultimately result in the same type being created in BaseModel.__class_getitem__.
|
||||
To handle this, we have a fallback _late_cache_key that is checked later if the _early_cache_key
|
||||
lookup fails, and should result in a cache hit _precisely_ when the inputs to __class_getitem__
|
||||
would result in the same type.
|
||||
"""
|
||||
return cls, typevar_values, _union_orderings_key(typevar_values)
|
||||
|
||||
|
||||
def _late_cache_key(origin: type[BaseModel], args: tuple[Any, ...], typevar_values: Any) -> GenericTypesCacheKey:
|
||||
"""This is intended for use later in the process of creating a new type, when we have more information
|
||||
about the exact args that will be passed. If it turns out that a different set of inputs to
|
||||
__class_getitem__ resulted in the same inputs to the generic type creation process, we can still
|
||||
return the cached type, and update the cache with the _early_cache_key as well.
|
||||
"""
|
||||
# The _union_orderings_key is placed at the start here to ensure there cannot be a collision with an
|
||||
# _early_cache_key, as that function will always produce a BaseModel subclass as the first item in the key,
|
||||
# whereas this function will always produce a tuple as the first item in the key.
|
||||
return _union_orderings_key(typevar_values), origin, args
|
27
venv/lib/python3.11/site-packages/pydantic/_internal/_git.py
Normal file
27
venv/lib/python3.11/site-packages/pydantic/_internal/_git.py
Normal file
@ -0,0 +1,27 @@
|
||||
"""Git utilities, adopted from mypy's git utilities (https://github.com/python/mypy/blob/master/mypy/git.py)."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
|
||||
def is_git_repo(dir: str) -> bool:
|
||||
"""Is the given directory version-controlled with git?"""
|
||||
return os.path.exists(os.path.join(dir, '.git'))
|
||||
|
||||
|
||||
def have_git() -> bool: # pragma: no cover
|
||||
"""Can we run the git executable?"""
|
||||
try:
|
||||
subprocess.check_output(['git', '--help'])
|
||||
return True
|
||||
except subprocess.CalledProcessError:
|
||||
return False
|
||||
except OSError:
|
||||
return False
|
||||
|
||||
|
||||
def git_revision(dir: str) -> str:
|
||||
"""Get the SHA-1 of the HEAD of a git repository."""
|
||||
return subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD'], cwd=dir).decode('utf-8').strip()
|
@ -0,0 +1,20 @@
|
||||
from functools import cache
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pydantic import BaseModel
|
||||
from pydantic.fields import FieldInfo
|
||||
|
||||
|
||||
@cache
|
||||
def import_cached_base_model() -> type['BaseModel']:
|
||||
from pydantic import BaseModel
|
||||
|
||||
return BaseModel
|
||||
|
||||
|
||||
@cache
|
||||
def import_cached_field_info() -> type['FieldInfo']:
|
||||
from pydantic.fields import FieldInfo
|
||||
|
||||
return FieldInfo
|
@ -0,0 +1,7 @@
|
||||
import sys
|
||||
|
||||
# `slots` is available on Python >= 3.10
|
||||
if sys.version_info >= (3, 10):
|
||||
slots_true = {'slots': True}
|
||||
else:
|
||||
slots_true = {}
|
@ -0,0 +1,397 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections import defaultdict
|
||||
from collections.abc import Iterable
|
||||
from copy import copy
|
||||
from decimal import Decimal
|
||||
from functools import lru_cache, partial
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from pydantic_core import CoreSchema, PydanticCustomError, ValidationError, to_jsonable_python
|
||||
from pydantic_core import core_schema as cs
|
||||
|
||||
from ._fields import PydanticMetadata
|
||||
from ._import_utils import import_cached_field_info
|
||||
|
||||
if TYPE_CHECKING:
|
||||
pass
|
||||
|
||||
STRICT = {'strict'}
|
||||
FAIL_FAST = {'fail_fast'}
|
||||
LENGTH_CONSTRAINTS = {'min_length', 'max_length'}
|
||||
INEQUALITY = {'le', 'ge', 'lt', 'gt'}
|
||||
NUMERIC_CONSTRAINTS = {'multiple_of', *INEQUALITY}
|
||||
ALLOW_INF_NAN = {'allow_inf_nan'}
|
||||
|
||||
STR_CONSTRAINTS = {
|
||||
*LENGTH_CONSTRAINTS,
|
||||
*STRICT,
|
||||
'strip_whitespace',
|
||||
'to_lower',
|
||||
'to_upper',
|
||||
'pattern',
|
||||
'coerce_numbers_to_str',
|
||||
}
|
||||
BYTES_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT}
|
||||
|
||||
LIST_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT, *FAIL_FAST}
|
||||
TUPLE_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT, *FAIL_FAST}
|
||||
SET_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT, *FAIL_FAST}
|
||||
DICT_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT}
|
||||
GENERATOR_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT}
|
||||
SEQUENCE_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *FAIL_FAST}
|
||||
|
||||
FLOAT_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *ALLOW_INF_NAN, *STRICT}
|
||||
DECIMAL_CONSTRAINTS = {'max_digits', 'decimal_places', *FLOAT_CONSTRAINTS}
|
||||
INT_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *ALLOW_INF_NAN, *STRICT}
|
||||
BOOL_CONSTRAINTS = STRICT
|
||||
UUID_CONSTRAINTS = STRICT
|
||||
|
||||
DATE_TIME_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
|
||||
TIMEDELTA_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
|
||||
TIME_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
|
||||
LAX_OR_STRICT_CONSTRAINTS = STRICT
|
||||
ENUM_CONSTRAINTS = STRICT
|
||||
COMPLEX_CONSTRAINTS = STRICT
|
||||
|
||||
UNION_CONSTRAINTS = {'union_mode'}
|
||||
URL_CONSTRAINTS = {
|
||||
'max_length',
|
||||
'allowed_schemes',
|
||||
'host_required',
|
||||
'default_host',
|
||||
'default_port',
|
||||
'default_path',
|
||||
}
|
||||
|
||||
TEXT_SCHEMA_TYPES = ('str', 'bytes', 'url', 'multi-host-url')
|
||||
SEQUENCE_SCHEMA_TYPES = ('list', 'tuple', 'set', 'frozenset', 'generator', *TEXT_SCHEMA_TYPES)
|
||||
NUMERIC_SCHEMA_TYPES = ('float', 'int', 'date', 'time', 'timedelta', 'datetime')
|
||||
|
||||
CONSTRAINTS_TO_ALLOWED_SCHEMAS: dict[str, set[str]] = defaultdict(set)
|
||||
|
||||
constraint_schema_pairings: list[tuple[set[str], tuple[str, ...]]] = [
|
||||
(STR_CONSTRAINTS, TEXT_SCHEMA_TYPES),
|
||||
(BYTES_CONSTRAINTS, ('bytes',)),
|
||||
(LIST_CONSTRAINTS, ('list',)),
|
||||
(TUPLE_CONSTRAINTS, ('tuple',)),
|
||||
(SET_CONSTRAINTS, ('set', 'frozenset')),
|
||||
(DICT_CONSTRAINTS, ('dict',)),
|
||||
(GENERATOR_CONSTRAINTS, ('generator',)),
|
||||
(FLOAT_CONSTRAINTS, ('float',)),
|
||||
(INT_CONSTRAINTS, ('int',)),
|
||||
(DATE_TIME_CONSTRAINTS, ('date', 'time', 'datetime', 'timedelta')),
|
||||
# TODO: this is a bit redundant, we could probably avoid some of these
|
||||
(STRICT, (*TEXT_SCHEMA_TYPES, *SEQUENCE_SCHEMA_TYPES, *NUMERIC_SCHEMA_TYPES, 'typed-dict', 'model')),
|
||||
(UNION_CONSTRAINTS, ('union',)),
|
||||
(URL_CONSTRAINTS, ('url', 'multi-host-url')),
|
||||
(BOOL_CONSTRAINTS, ('bool',)),
|
||||
(UUID_CONSTRAINTS, ('uuid',)),
|
||||
(LAX_OR_STRICT_CONSTRAINTS, ('lax-or-strict',)),
|
||||
(ENUM_CONSTRAINTS, ('enum',)),
|
||||
(DECIMAL_CONSTRAINTS, ('decimal',)),
|
||||
(COMPLEX_CONSTRAINTS, ('complex',)),
|
||||
]
|
||||
|
||||
for constraints, schemas in constraint_schema_pairings:
|
||||
for c in constraints:
|
||||
CONSTRAINTS_TO_ALLOWED_SCHEMAS[c].update(schemas)
|
||||
|
||||
|
||||
def as_jsonable_value(v: Any) -> Any:
|
||||
if type(v) not in (int, str, float, bytes, bool, type(None)):
|
||||
return to_jsonable_python(v)
|
||||
return v
|
||||
|
||||
|
||||
def expand_grouped_metadata(annotations: Iterable[Any]) -> Iterable[Any]:
|
||||
"""Expand the annotations.
|
||||
|
||||
Args:
|
||||
annotations: An iterable of annotations.
|
||||
|
||||
Returns:
|
||||
An iterable of expanded annotations.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from annotated_types import Ge, Len
|
||||
|
||||
from pydantic._internal._known_annotated_metadata import expand_grouped_metadata
|
||||
|
||||
print(list(expand_grouped_metadata([Ge(4), Len(5)])))
|
||||
#> [Ge(ge=4), MinLen(min_length=5)]
|
||||
```
|
||||
"""
|
||||
import annotated_types as at
|
||||
|
||||
FieldInfo = import_cached_field_info()
|
||||
|
||||
for annotation in annotations:
|
||||
if isinstance(annotation, at.GroupedMetadata):
|
||||
yield from annotation
|
||||
elif isinstance(annotation, FieldInfo):
|
||||
yield from annotation.metadata
|
||||
# this is a bit problematic in that it results in duplicate metadata
|
||||
# all of our "consumers" can handle it, but it is not ideal
|
||||
# we probably should split up FieldInfo into:
|
||||
# - annotated types metadata
|
||||
# - individual metadata known only to Pydantic
|
||||
annotation = copy(annotation)
|
||||
annotation.metadata = []
|
||||
yield annotation
|
||||
else:
|
||||
yield annotation
|
||||
|
||||
|
||||
@lru_cache
|
||||
def _get_at_to_constraint_map() -> dict[type, str]:
|
||||
"""Return a mapping of annotated types to constraints.
|
||||
|
||||
Normally, we would define a mapping like this in the module scope, but we can't do that
|
||||
because we don't permit module level imports of `annotated_types`, in an attempt to speed up
|
||||
the import time of `pydantic`. We still only want to have this dictionary defined in one place,
|
||||
so we use this function to cache the result.
|
||||
"""
|
||||
import annotated_types as at
|
||||
|
||||
return {
|
||||
at.Gt: 'gt',
|
||||
at.Ge: 'ge',
|
||||
at.Lt: 'lt',
|
||||
at.Le: 'le',
|
||||
at.MultipleOf: 'multiple_of',
|
||||
at.MinLen: 'min_length',
|
||||
at.MaxLen: 'max_length',
|
||||
}
|
||||
|
||||
|
||||
def apply_known_metadata(annotation: Any, schema: CoreSchema) -> CoreSchema | None: # noqa: C901
|
||||
"""Apply `annotation` to `schema` if it is an annotation we know about (Gt, Le, etc.).
|
||||
Otherwise return `None`.
|
||||
|
||||
This does not handle all known annotations. If / when it does, it can always
|
||||
return a CoreSchema and return the unmodified schema if the annotation should be ignored.
|
||||
|
||||
Assumes that GroupedMetadata has already been expanded via `expand_grouped_metadata`.
|
||||
|
||||
Args:
|
||||
annotation: The annotation.
|
||||
schema: The schema.
|
||||
|
||||
Returns:
|
||||
An updated schema with annotation if it is an annotation we know about, `None` otherwise.
|
||||
|
||||
Raises:
|
||||
PydanticCustomError: If `Predicate` fails.
|
||||
"""
|
||||
import annotated_types as at
|
||||
|
||||
from ._validators import NUMERIC_VALIDATOR_LOOKUP, forbid_inf_nan_check
|
||||
|
||||
schema = schema.copy()
|
||||
schema_update, other_metadata = collect_known_metadata([annotation])
|
||||
schema_type = schema['type']
|
||||
|
||||
chain_schema_constraints: set[str] = {
|
||||
'pattern',
|
||||
'strip_whitespace',
|
||||
'to_lower',
|
||||
'to_upper',
|
||||
'coerce_numbers_to_str',
|
||||
}
|
||||
chain_schema_steps: list[CoreSchema] = []
|
||||
|
||||
for constraint, value in schema_update.items():
|
||||
if constraint not in CONSTRAINTS_TO_ALLOWED_SCHEMAS:
|
||||
raise ValueError(f'Unknown constraint {constraint}')
|
||||
allowed_schemas = CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint]
|
||||
|
||||
# if it becomes necessary to handle more than one constraint
|
||||
# in this recursive case with function-after or function-wrap, we should refactor
|
||||
# this is a bit challenging because we sometimes want to apply constraints to the inner schema,
|
||||
# whereas other times we want to wrap the existing schema with a new one that enforces a new constraint.
|
||||
if schema_type in {'function-before', 'function-wrap', 'function-after'} and constraint == 'strict':
|
||||
schema['schema'] = apply_known_metadata(annotation, schema['schema']) # type: ignore # schema is function schema
|
||||
return schema
|
||||
|
||||
# if we're allowed to apply constraint directly to the schema, like le to int, do that
|
||||
if schema_type in allowed_schemas:
|
||||
if constraint == 'union_mode' and schema_type == 'union':
|
||||
schema['mode'] = value # type: ignore # schema is UnionSchema
|
||||
else:
|
||||
if schema_type == 'decimal' and constraint in {'multiple_of', 'le', 'ge', 'lt', 'gt'}:
|
||||
schema[constraint] = Decimal(value)
|
||||
else:
|
||||
schema[constraint] = value
|
||||
continue
|
||||
|
||||
# else, apply a function after validator to the schema to enforce the corresponding constraint
|
||||
if constraint in chain_schema_constraints:
|
||||
|
||||
def _apply_constraint_with_incompatibility_info(
|
||||
value: Any, handler: cs.ValidatorFunctionWrapHandler
|
||||
) -> Any:
|
||||
try:
|
||||
x = handler(value)
|
||||
except ValidationError as ve:
|
||||
# if the error is about the type, it's likely that the constraint is incompatible the type of the field
|
||||
# for example, the following invalid schema wouldn't be caught during schema build, but rather at this point
|
||||
# with a cryptic 'string_type' error coming from the string validator,
|
||||
# that we'd rather express as a constraint incompatibility error (TypeError)
|
||||
# Annotated[list[int], Field(pattern='abc')]
|
||||
if 'type' in ve.errors()[0]['type']:
|
||||
raise TypeError(
|
||||
f"Unable to apply constraint '{constraint}' to supplied value {value} for schema of type '{schema_type}'" # noqa: B023
|
||||
)
|
||||
raise ve
|
||||
return x
|
||||
|
||||
chain_schema_steps.append(
|
||||
cs.no_info_wrap_validator_function(
|
||||
_apply_constraint_with_incompatibility_info, cs.str_schema(**{constraint: value})
|
||||
)
|
||||
)
|
||||
elif constraint in NUMERIC_VALIDATOR_LOOKUP:
|
||||
if constraint in LENGTH_CONSTRAINTS:
|
||||
inner_schema = schema
|
||||
while inner_schema['type'] in {'function-before', 'function-wrap', 'function-after'}:
|
||||
inner_schema = inner_schema['schema'] # type: ignore
|
||||
inner_schema_type = inner_schema['type']
|
||||
if inner_schema_type == 'list' or (
|
||||
inner_schema_type == 'json-or-python' and inner_schema['json_schema']['type'] == 'list' # type: ignore
|
||||
):
|
||||
js_constraint_key = 'minItems' if constraint == 'min_length' else 'maxItems'
|
||||
else:
|
||||
js_constraint_key = 'minLength' if constraint == 'min_length' else 'maxLength'
|
||||
else:
|
||||
js_constraint_key = constraint
|
||||
|
||||
schema = cs.no_info_after_validator_function(
|
||||
partial(NUMERIC_VALIDATOR_LOOKUP[constraint], **{constraint: value}), schema
|
||||
)
|
||||
metadata = schema.get('metadata', {})
|
||||
if (existing_json_schema_updates := metadata.get('pydantic_js_updates')) is not None:
|
||||
metadata['pydantic_js_updates'] = {
|
||||
**existing_json_schema_updates,
|
||||
**{js_constraint_key: as_jsonable_value(value)},
|
||||
}
|
||||
else:
|
||||
metadata['pydantic_js_updates'] = {js_constraint_key: as_jsonable_value(value)}
|
||||
schema['metadata'] = metadata
|
||||
elif constraint == 'allow_inf_nan' and value is False:
|
||||
schema = cs.no_info_after_validator_function(
|
||||
forbid_inf_nan_check,
|
||||
schema,
|
||||
)
|
||||
else:
|
||||
# It's rare that we'd get here, but it's possible if we add a new constraint and forget to handle it
|
||||
# Most constraint errors are caught at runtime during attempted application
|
||||
raise RuntimeError(f"Unable to apply constraint '{constraint}' to schema of type '{schema_type}'")
|
||||
|
||||
for annotation in other_metadata:
|
||||
if (annotation_type := type(annotation)) in (at_to_constraint_map := _get_at_to_constraint_map()):
|
||||
constraint = at_to_constraint_map[annotation_type]
|
||||
validator = NUMERIC_VALIDATOR_LOOKUP.get(constraint)
|
||||
if validator is None:
|
||||
raise ValueError(f'Unknown constraint {constraint}')
|
||||
schema = cs.no_info_after_validator_function(
|
||||
partial(validator, {constraint: getattr(annotation, constraint)}), schema
|
||||
)
|
||||
continue
|
||||
elif isinstance(annotation, (at.Predicate, at.Not)):
|
||||
predicate_name = f'{annotation.func.__qualname__}' if hasattr(annotation.func, '__qualname__') else ''
|
||||
|
||||
def val_func(v: Any) -> Any:
|
||||
predicate_satisfied = annotation.func(v) # noqa: B023
|
||||
|
||||
# annotation.func may also raise an exception, let it pass through
|
||||
if isinstance(annotation, at.Predicate): # noqa: B023
|
||||
if not predicate_satisfied:
|
||||
raise PydanticCustomError(
|
||||
'predicate_failed',
|
||||
f'Predicate {predicate_name} failed', # type: ignore # noqa: B023
|
||||
)
|
||||
else:
|
||||
if predicate_satisfied:
|
||||
raise PydanticCustomError(
|
||||
'not_operation_failed',
|
||||
f'Not of {predicate_name} failed', # type: ignore # noqa: B023
|
||||
)
|
||||
|
||||
return v
|
||||
|
||||
schema = cs.no_info_after_validator_function(val_func, schema)
|
||||
else:
|
||||
# ignore any other unknown metadata
|
||||
return None
|
||||
|
||||
if chain_schema_steps:
|
||||
chain_schema_steps = [schema] + chain_schema_steps
|
||||
return cs.chain_schema(chain_schema_steps)
|
||||
|
||||
return schema
|
||||
|
||||
|
||||
def collect_known_metadata(annotations: Iterable[Any]) -> tuple[dict[str, Any], list[Any]]:
|
||||
"""Split `annotations` into known metadata and unknown annotations.
|
||||
|
||||
Args:
|
||||
annotations: An iterable of annotations.
|
||||
|
||||
Returns:
|
||||
A tuple contains a dict of known metadata and a list of unknown annotations.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from annotated_types import Gt, Len
|
||||
|
||||
from pydantic._internal._known_annotated_metadata import collect_known_metadata
|
||||
|
||||
print(collect_known_metadata([Gt(1), Len(42), ...]))
|
||||
#> ({'gt': 1, 'min_length': 42}, [Ellipsis])
|
||||
```
|
||||
"""
|
||||
annotations = expand_grouped_metadata(annotations)
|
||||
|
||||
res: dict[str, Any] = {}
|
||||
remaining: list[Any] = []
|
||||
|
||||
for annotation in annotations:
|
||||
# isinstance(annotation, PydanticMetadata) also covers ._fields:_PydanticGeneralMetadata
|
||||
if isinstance(annotation, PydanticMetadata):
|
||||
res.update(annotation.__dict__)
|
||||
# we don't use dataclasses.asdict because that recursively calls asdict on the field values
|
||||
elif (annotation_type := type(annotation)) in (at_to_constraint_map := _get_at_to_constraint_map()):
|
||||
constraint = at_to_constraint_map[annotation_type]
|
||||
res[constraint] = getattr(annotation, constraint)
|
||||
elif isinstance(annotation, type) and issubclass(annotation, PydanticMetadata):
|
||||
# also support PydanticMetadata classes being used without initialisation,
|
||||
# e.g. `Annotated[int, Strict]` as well as `Annotated[int, Strict()]`
|
||||
res.update({k: v for k, v in vars(annotation).items() if not k.startswith('_')})
|
||||
else:
|
||||
remaining.append(annotation)
|
||||
# Nones can sneak in but pydantic-core will reject them
|
||||
# it'd be nice to clean things up so we don't put in None (we probably don't _need_ to, it was just easier)
|
||||
# but this is simple enough to kick that can down the road
|
||||
res = {k: v for k, v in res.items() if v is not None}
|
||||
return res, remaining
|
||||
|
||||
|
||||
def check_metadata(metadata: dict[str, Any], allowed: Iterable[str], source_type: Any) -> None:
|
||||
"""A small utility function to validate that the given metadata can be applied to the target.
|
||||
More than saving lines of code, this gives us a consistent error message for all of our internal implementations.
|
||||
|
||||
Args:
|
||||
metadata: A dict of metadata.
|
||||
allowed: An iterable of allowed metadata.
|
||||
source_type: The source type.
|
||||
|
||||
Raises:
|
||||
TypeError: If there is metadatas that can't be applied on source type.
|
||||
"""
|
||||
unknown = metadata.keys() - set(allowed)
|
||||
if unknown:
|
||||
raise TypeError(
|
||||
f'The following constraints cannot be applied to {source_type!r}: {", ".join([f"{k!r}" for k in unknown])}'
|
||||
)
|
@ -0,0 +1,228 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator, Mapping
|
||||
from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, TypeVar, Union
|
||||
|
||||
from pydantic_core import CoreSchema, SchemaSerializer, SchemaValidator
|
||||
|
||||
from ..errors import PydanticErrorCodes, PydanticUserError
|
||||
from ..plugin._schema_validator import PluggableSchemaValidator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..dataclasses import PydanticDataclass
|
||||
from ..main import BaseModel
|
||||
from ..type_adapter import TypeAdapter
|
||||
|
||||
|
||||
ValSer = TypeVar('ValSer', bound=Union[SchemaValidator, PluggableSchemaValidator, SchemaSerializer])
|
||||
T = TypeVar('T')
|
||||
|
||||
|
||||
class MockCoreSchema(Mapping[str, Any]):
|
||||
"""Mocker for `pydantic_core.CoreSchema` which optionally attempts to
|
||||
rebuild the thing it's mocking when one of its methods is accessed and raises an error if that fails.
|
||||
"""
|
||||
|
||||
__slots__ = '_error_message', '_code', '_attempt_rebuild', '_built_memo'
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
error_message: str,
|
||||
*,
|
||||
code: PydanticErrorCodes,
|
||||
attempt_rebuild: Callable[[], CoreSchema | None] | None = None,
|
||||
) -> None:
|
||||
self._error_message = error_message
|
||||
self._code: PydanticErrorCodes = code
|
||||
self._attempt_rebuild = attempt_rebuild
|
||||
self._built_memo: CoreSchema | None = None
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
return self._get_built().__getitem__(key)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self._get_built().__len__()
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return self._get_built().__iter__()
|
||||
|
||||
def _get_built(self) -> CoreSchema:
|
||||
if self._built_memo is not None:
|
||||
return self._built_memo
|
||||
|
||||
if self._attempt_rebuild:
|
||||
schema = self._attempt_rebuild()
|
||||
if schema is not None:
|
||||
self._built_memo = schema
|
||||
return schema
|
||||
raise PydanticUserError(self._error_message, code=self._code)
|
||||
|
||||
def rebuild(self) -> CoreSchema | None:
|
||||
self._built_memo = None
|
||||
if self._attempt_rebuild:
|
||||
schema = self._attempt_rebuild()
|
||||
if schema is not None:
|
||||
return schema
|
||||
else:
|
||||
raise PydanticUserError(self._error_message, code=self._code)
|
||||
return None
|
||||
|
||||
|
||||
class MockValSer(Generic[ValSer]):
|
||||
"""Mocker for `pydantic_core.SchemaValidator` or `pydantic_core.SchemaSerializer` which optionally attempts to
|
||||
rebuild the thing it's mocking when one of its methods is accessed and raises an error if that fails.
|
||||
"""
|
||||
|
||||
__slots__ = '_error_message', '_code', '_val_or_ser', '_attempt_rebuild'
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
error_message: str,
|
||||
*,
|
||||
code: PydanticErrorCodes,
|
||||
val_or_ser: Literal['validator', 'serializer'],
|
||||
attempt_rebuild: Callable[[], ValSer | None] | None = None,
|
||||
) -> None:
|
||||
self._error_message = error_message
|
||||
self._val_or_ser = SchemaValidator if val_or_ser == 'validator' else SchemaSerializer
|
||||
self._code: PydanticErrorCodes = code
|
||||
self._attempt_rebuild = attempt_rebuild
|
||||
|
||||
def __getattr__(self, item: str) -> None:
|
||||
__tracebackhide__ = True
|
||||
if self._attempt_rebuild:
|
||||
val_ser = self._attempt_rebuild()
|
||||
if val_ser is not None:
|
||||
return getattr(val_ser, item)
|
||||
|
||||
# raise an AttributeError if `item` doesn't exist
|
||||
getattr(self._val_or_ser, item)
|
||||
raise PydanticUserError(self._error_message, code=self._code)
|
||||
|
||||
def rebuild(self) -> ValSer | None:
|
||||
if self._attempt_rebuild:
|
||||
val_ser = self._attempt_rebuild()
|
||||
if val_ser is not None:
|
||||
return val_ser
|
||||
else:
|
||||
raise PydanticUserError(self._error_message, code=self._code)
|
||||
return None
|
||||
|
||||
|
||||
def set_type_adapter_mocks(adapter: TypeAdapter) -> None:
|
||||
"""Set `core_schema`, `validator` and `serializer` to mock core types on a type adapter instance.
|
||||
|
||||
Args:
|
||||
adapter: The type adapter instance to set the mocks on
|
||||
"""
|
||||
type_repr = str(adapter._type)
|
||||
undefined_type_error_message = (
|
||||
f'`TypeAdapter[{type_repr}]` is not fully defined; you should define `{type_repr}` and all referenced types,'
|
||||
f' then call `.rebuild()` on the instance.'
|
||||
)
|
||||
|
||||
def attempt_rebuild_fn(attr_fn: Callable[[TypeAdapter], T]) -> Callable[[], T | None]:
|
||||
def handler() -> T | None:
|
||||
if adapter.rebuild(raise_errors=False, _parent_namespace_depth=5) is not False:
|
||||
return attr_fn(adapter)
|
||||
return None
|
||||
|
||||
return handler
|
||||
|
||||
adapter.core_schema = MockCoreSchema( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda ta: ta.core_schema),
|
||||
)
|
||||
adapter.validator = MockValSer( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
val_or_ser='validator',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda ta: ta.validator),
|
||||
)
|
||||
adapter.serializer = MockValSer( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
val_or_ser='serializer',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda ta: ta.serializer),
|
||||
)
|
||||
|
||||
|
||||
def set_model_mocks(cls: type[BaseModel], undefined_name: str = 'all referenced types') -> None:
|
||||
"""Set `__pydantic_core_schema__`, `__pydantic_validator__` and `__pydantic_serializer__` to mock core types on a model.
|
||||
|
||||
Args:
|
||||
cls: The model class to set the mocks on
|
||||
undefined_name: Name of the undefined thing, used in error messages
|
||||
"""
|
||||
undefined_type_error_message = (
|
||||
f'`{cls.__name__}` is not fully defined; you should define {undefined_name},'
|
||||
f' then call `{cls.__name__}.model_rebuild()`.'
|
||||
)
|
||||
|
||||
def attempt_rebuild_fn(attr_fn: Callable[[type[BaseModel]], T]) -> Callable[[], T | None]:
|
||||
def handler() -> T | None:
|
||||
if cls.model_rebuild(raise_errors=False, _parent_namespace_depth=5) is not False:
|
||||
return attr_fn(cls)
|
||||
return None
|
||||
|
||||
return handler
|
||||
|
||||
cls.__pydantic_core_schema__ = MockCoreSchema( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda c: c.__pydantic_core_schema__),
|
||||
)
|
||||
cls.__pydantic_validator__ = MockValSer( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
val_or_ser='validator',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda c: c.__pydantic_validator__),
|
||||
)
|
||||
cls.__pydantic_serializer__ = MockValSer( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
val_or_ser='serializer',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda c: c.__pydantic_serializer__),
|
||||
)
|
||||
|
||||
|
||||
def set_dataclass_mocks(cls: type[PydanticDataclass], undefined_name: str = 'all referenced types') -> None:
|
||||
"""Set `__pydantic_validator__` and `__pydantic_serializer__` to `MockValSer`s on a dataclass.
|
||||
|
||||
Args:
|
||||
cls: The model class to set the mocks on
|
||||
undefined_name: Name of the undefined thing, used in error messages
|
||||
"""
|
||||
from ..dataclasses import rebuild_dataclass
|
||||
|
||||
undefined_type_error_message = (
|
||||
f'`{cls.__name__}` is not fully defined; you should define {undefined_name},'
|
||||
f' then call `pydantic.dataclasses.rebuild_dataclass({cls.__name__})`.'
|
||||
)
|
||||
|
||||
def attempt_rebuild_fn(attr_fn: Callable[[type[PydanticDataclass]], T]) -> Callable[[], T | None]:
|
||||
def handler() -> T | None:
|
||||
if rebuild_dataclass(cls, raise_errors=False, _parent_namespace_depth=5) is not False:
|
||||
return attr_fn(cls)
|
||||
return None
|
||||
|
||||
return handler
|
||||
|
||||
cls.__pydantic_core_schema__ = MockCoreSchema( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda c: c.__pydantic_core_schema__),
|
||||
)
|
||||
cls.__pydantic_validator__ = MockValSer( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
val_or_ser='validator',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda c: c.__pydantic_validator__),
|
||||
)
|
||||
cls.__pydantic_serializer__ = MockValSer( # pyright: ignore[reportAttributeAccessIssue]
|
||||
undefined_type_error_message,
|
||||
code='class-not-fully-defined',
|
||||
val_or_ser='serializer',
|
||||
attempt_rebuild=attempt_rebuild_fn(lambda c: c.__pydantic_serializer__),
|
||||
)
|
@ -0,0 +1,792 @@
|
||||
"""Private logic for creating models."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import builtins
|
||||
import operator
|
||||
import sys
|
||||
import typing
|
||||
import warnings
|
||||
import weakref
|
||||
from abc import ABCMeta
|
||||
from functools import cache, partial, wraps
|
||||
from types import FunctionType
|
||||
from typing import Any, Callable, Generic, Literal, NoReturn, cast
|
||||
|
||||
from pydantic_core import PydanticUndefined, SchemaSerializer
|
||||
from typing_extensions import TypeAliasType, dataclass_transform, deprecated, get_args, get_origin
|
||||
from typing_inspection import typing_objects
|
||||
|
||||
from ..errors import PydanticUndefinedAnnotation, PydanticUserError
|
||||
from ..plugin._schema_validator import create_schema_validator
|
||||
from ..warnings import GenericBeforeBaseModelWarning, PydanticDeprecatedSince20
|
||||
from ._config import ConfigWrapper
|
||||
from ._decorators import DecoratorInfos, PydanticDescriptorProxy, get_attribute_from_bases, unwrap_wrapped_function
|
||||
from ._fields import collect_model_fields, is_valid_field_name, is_valid_privateattr_name
|
||||
from ._generate_schema import GenerateSchema, InvalidSchemaError
|
||||
from ._generics import PydanticGenericMetadata, get_model_typevars_map
|
||||
from ._import_utils import import_cached_base_model, import_cached_field_info
|
||||
from ._mock_val_ser import set_model_mocks
|
||||
from ._namespace_utils import NsResolver
|
||||
from ._signature import generate_pydantic_signature
|
||||
from ._typing_extra import (
|
||||
_make_forward_ref,
|
||||
eval_type_backport,
|
||||
is_classvar_annotation,
|
||||
parent_frame_namespace,
|
||||
)
|
||||
from ._utils import LazyClassAttribute, SafeGetItemProxy
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
from ..fields import Field as PydanticModelField
|
||||
from ..fields import FieldInfo, ModelPrivateAttr
|
||||
from ..fields import PrivateAttr as PydanticModelPrivateAttr
|
||||
from ..main import BaseModel
|
||||
else:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
PydanticModelField = object()
|
||||
PydanticModelPrivateAttr = object()
|
||||
|
||||
object_setattr = object.__setattr__
|
||||
|
||||
|
||||
class _ModelNamespaceDict(dict):
|
||||
"""A dictionary subclass that intercepts attribute setting on model classes and
|
||||
warns about overriding of decorators.
|
||||
"""
|
||||
|
||||
def __setitem__(self, k: str, v: object) -> None:
|
||||
existing: Any = self.get(k, None)
|
||||
if existing and v is not existing and isinstance(existing, PydanticDescriptorProxy):
|
||||
warnings.warn(f'`{k}` overrides an existing Pydantic `{existing.decorator_info.decorator_repr}` decorator')
|
||||
|
||||
return super().__setitem__(k, v)
|
||||
|
||||
|
||||
def NoInitField(
|
||||
*,
|
||||
init: Literal[False] = False,
|
||||
) -> Any:
|
||||
"""Only for typing purposes. Used as default value of `__pydantic_fields_set__`,
|
||||
`__pydantic_extra__`, `__pydantic_private__`, so they could be ignored when
|
||||
synthesizing the `__init__` signature.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_transform(kw_only_default=True, field_specifiers=(PydanticModelField, PydanticModelPrivateAttr, NoInitField))
|
||||
class ModelMetaclass(ABCMeta):
|
||||
def __new__(
|
||||
mcs,
|
||||
cls_name: str,
|
||||
bases: tuple[type[Any], ...],
|
||||
namespace: dict[str, Any],
|
||||
__pydantic_generic_metadata__: PydanticGenericMetadata | None = None,
|
||||
__pydantic_reset_parent_namespace__: bool = True,
|
||||
_create_model_module: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> type:
|
||||
"""Metaclass for creating Pydantic models.
|
||||
|
||||
Args:
|
||||
cls_name: The name of the class to be created.
|
||||
bases: The base classes of the class to be created.
|
||||
namespace: The attribute dictionary of the class to be created.
|
||||
__pydantic_generic_metadata__: Metadata for generic models.
|
||||
__pydantic_reset_parent_namespace__: Reset parent namespace.
|
||||
_create_model_module: The module of the class to be created, if created by `create_model`.
|
||||
**kwargs: Catch-all for any other keyword arguments.
|
||||
|
||||
Returns:
|
||||
The new class created by the metaclass.
|
||||
"""
|
||||
# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact
|
||||
# that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__`
|
||||
# call we're in the middle of is for the `BaseModel` class.
|
||||
if bases:
|
||||
base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases)
|
||||
|
||||
config_wrapper = ConfigWrapper.for_model(bases, namespace, kwargs)
|
||||
namespace['model_config'] = config_wrapper.config_dict
|
||||
private_attributes = inspect_namespace(
|
||||
namespace, config_wrapper.ignored_types, class_vars, base_field_names
|
||||
)
|
||||
if private_attributes or base_private_attributes:
|
||||
original_model_post_init = get_model_post_init(namespace, bases)
|
||||
if original_model_post_init is not None:
|
||||
# if there are private_attributes and a model_post_init function, we handle both
|
||||
|
||||
@wraps(original_model_post_init)
|
||||
def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
|
||||
"""We need to both initialize private attributes and call the user-defined model_post_init
|
||||
method.
|
||||
"""
|
||||
init_private_attributes(self, context)
|
||||
original_model_post_init(self, context)
|
||||
|
||||
namespace['model_post_init'] = wrapped_model_post_init
|
||||
else:
|
||||
namespace['model_post_init'] = init_private_attributes
|
||||
|
||||
namespace['__class_vars__'] = class_vars
|
||||
namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes}
|
||||
|
||||
cls = cast('type[BaseModel]', super().__new__(mcs, cls_name, bases, namespace, **kwargs))
|
||||
BaseModel_ = import_cached_base_model()
|
||||
|
||||
mro = cls.__mro__
|
||||
if Generic in mro and mro.index(Generic) < mro.index(BaseModel_):
|
||||
warnings.warn(
|
||||
GenericBeforeBaseModelWarning(
|
||||
'Classes should inherit from `BaseModel` before generic classes (e.g. `typing.Generic[T]`) '
|
||||
'for pydantic generics to work properly.'
|
||||
),
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False)
|
||||
cls.__pydantic_post_init__ = (
|
||||
None if cls.model_post_init is BaseModel_.model_post_init else 'model_post_init'
|
||||
)
|
||||
|
||||
cls.__pydantic_setattr_handlers__ = {}
|
||||
|
||||
cls.__pydantic_decorators__ = DecoratorInfos.build(cls)
|
||||
|
||||
# Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class
|
||||
if __pydantic_generic_metadata__:
|
||||
cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__
|
||||
else:
|
||||
parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ())
|
||||
parameters = getattr(cls, '__parameters__', None) or parent_parameters
|
||||
if parameters and parent_parameters and not all(x in parameters for x in parent_parameters):
|
||||
from ..root_model import RootModelRootType
|
||||
|
||||
missing_parameters = tuple(x for x in parameters if x not in parent_parameters)
|
||||
if RootModelRootType in parent_parameters and RootModelRootType not in parameters:
|
||||
# This is a special case where the user has subclassed `RootModel`, but has not parametrized
|
||||
# RootModel with the generic type identifiers being used. Ex:
|
||||
# class MyModel(RootModel, Generic[T]):
|
||||
# root: T
|
||||
# Should instead just be:
|
||||
# class MyModel(RootModel[T]):
|
||||
# root: T
|
||||
parameters_str = ', '.join([x.__name__ for x in missing_parameters])
|
||||
error_message = (
|
||||
f'{cls.__name__} is a subclass of `RootModel`, but does not include the generic type identifier(s) '
|
||||
f'{parameters_str} in its parameters. '
|
||||
f'You should parametrize RootModel directly, e.g., `class {cls.__name__}(RootModel[{parameters_str}]): ...`.'
|
||||
)
|
||||
else:
|
||||
combined_parameters = parent_parameters + missing_parameters
|
||||
parameters_str = ', '.join([str(x) for x in combined_parameters])
|
||||
generic_type_label = f'typing.Generic[{parameters_str}]'
|
||||
error_message = (
|
||||
f'All parameters must be present on typing.Generic;'
|
||||
f' you should inherit from {generic_type_label}.'
|
||||
)
|
||||
if Generic not in bases: # pragma: no cover
|
||||
# We raise an error here not because it is desirable, but because some cases are mishandled.
|
||||
# It would be nice to remove this error and still have things behave as expected, it's just
|
||||
# challenging because we are using a custom `__class_getitem__` to parametrize generic models,
|
||||
# and not returning a typing._GenericAlias from it.
|
||||
bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label])
|
||||
error_message += (
|
||||
f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)'
|
||||
)
|
||||
raise TypeError(error_message)
|
||||
|
||||
cls.__pydantic_generic_metadata__ = {
|
||||
'origin': None,
|
||||
'args': (),
|
||||
'parameters': parameters,
|
||||
}
|
||||
|
||||
cls.__pydantic_complete__ = False # Ensure this specific class gets completed
|
||||
|
||||
# preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
|
||||
# for attributes not in `new_namespace` (e.g. private attributes)
|
||||
for name, obj in private_attributes.items():
|
||||
obj.__set_name__(cls, name)
|
||||
|
||||
if __pydantic_reset_parent_namespace__:
|
||||
cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace())
|
||||
parent_namespace: dict[str, Any] | None = getattr(cls, '__pydantic_parent_namespace__', None)
|
||||
if isinstance(parent_namespace, dict):
|
||||
parent_namespace = unpack_lenient_weakvaluedict(parent_namespace)
|
||||
|
||||
ns_resolver = NsResolver(parent_namespace=parent_namespace)
|
||||
|
||||
set_model_fields(cls, config_wrapper=config_wrapper, ns_resolver=ns_resolver)
|
||||
|
||||
# This is also set in `complete_model_class()`, after schema gen because they are recreated.
|
||||
# We set them here as well for backwards compatibility:
|
||||
cls.__pydantic_computed_fields__ = {
|
||||
k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()
|
||||
}
|
||||
|
||||
if config_wrapper.defer_build:
|
||||
# TODO we can also stop there if `__pydantic_fields_complete__` is False.
|
||||
# However, `set_model_fields()` is currently lenient and we don't have access to the `NameError`.
|
||||
# (which is useful as we can provide the name in the error message: `set_model_mock(cls, e.name)`)
|
||||
set_model_mocks(cls)
|
||||
else:
|
||||
# Any operation that requires accessing the field infos instances should be put inside
|
||||
# `complete_model_class()`:
|
||||
complete_model_class(
|
||||
cls,
|
||||
config_wrapper,
|
||||
raise_errors=False,
|
||||
ns_resolver=ns_resolver,
|
||||
create_model_module=_create_model_module,
|
||||
)
|
||||
|
||||
if config_wrapper.frozen and '__hash__' not in namespace:
|
||||
set_default_hash_func(cls, bases)
|
||||
|
||||
# using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__
|
||||
# I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is
|
||||
# only hit for _proper_ subclasses of BaseModel
|
||||
super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc]
|
||||
return cls
|
||||
else:
|
||||
# These are instance variables, but have been assigned to `NoInitField` to trick the type checker.
|
||||
for instance_slot in '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__':
|
||||
namespace.pop(
|
||||
instance_slot,
|
||||
None, # In case the metaclass is used with a class other than `BaseModel`.
|
||||
)
|
||||
namespace.get('__annotations__', {}).clear()
|
||||
return super().__new__(mcs, cls_name, bases, namespace, **kwargs)
|
||||
|
||||
if not typing.TYPE_CHECKING: # pragma: no branch
|
||||
# We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""This is necessary to keep attribute access working for class attribute access."""
|
||||
private_attributes = self.__dict__.get('__private_attributes__')
|
||||
if private_attributes and item in private_attributes:
|
||||
return private_attributes[item]
|
||||
raise AttributeError(item)
|
||||
|
||||
@classmethod
|
||||
def __prepare__(cls, *args: Any, **kwargs: Any) -> dict[str, object]:
|
||||
return _ModelNamespaceDict()
|
||||
|
||||
def __instancecheck__(self, instance: Any) -> bool:
|
||||
"""Avoid calling ABC _abc_instancecheck unless we're pretty sure.
|
||||
|
||||
See #3829 and python/cpython#92810
|
||||
"""
|
||||
return hasattr(instance, '__pydantic_decorators__') and super().__instancecheck__(instance)
|
||||
|
||||
def __subclasscheck__(self, subclass: type[Any]) -> bool:
|
||||
"""Avoid calling ABC _abc_subclasscheck unless we're pretty sure.
|
||||
|
||||
See #3829 and python/cpython#92810
|
||||
"""
|
||||
return hasattr(subclass, '__pydantic_decorators__') and super().__subclasscheck__(subclass)
|
||||
|
||||
@staticmethod
|
||||
def _collect_bases_data(bases: tuple[type[Any], ...]) -> tuple[set[str], set[str], dict[str, ModelPrivateAttr]]:
|
||||
BaseModel = import_cached_base_model()
|
||||
|
||||
field_names: set[str] = set()
|
||||
class_vars: set[str] = set()
|
||||
private_attributes: dict[str, ModelPrivateAttr] = {}
|
||||
for base in bases:
|
||||
if issubclass(base, BaseModel) and base is not BaseModel:
|
||||
# model_fields might not be defined yet in the case of generics, so we use getattr here:
|
||||
field_names.update(getattr(base, '__pydantic_fields__', {}).keys())
|
||||
class_vars.update(base.__class_vars__)
|
||||
private_attributes.update(base.__private_attributes__)
|
||||
return field_names, class_vars, private_attributes
|
||||
|
||||
@property
|
||||
@deprecated('The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None)
|
||||
def __fields__(self) -> dict[str, FieldInfo]:
|
||||
warnings.warn(
|
||||
'The `__fields__` attribute is deprecated, use `model_fields` instead.',
|
||||
PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
return getattr(self, '__pydantic_fields__', {})
|
||||
|
||||
@property
|
||||
def __pydantic_fields_complete__(self) -> bool:
|
||||
"""Whether the fields where successfully collected (i.e. type hints were successfully resolves).
|
||||
|
||||
This is a private attribute, not meant to be used outside Pydantic.
|
||||
"""
|
||||
if not hasattr(self, '__pydantic_fields__'):
|
||||
return False
|
||||
|
||||
field_infos = cast('dict[str, FieldInfo]', self.__pydantic_fields__) # pyright: ignore[reportAttributeAccessIssue]
|
||||
|
||||
return all(field_info._complete for field_info in field_infos.values())
|
||||
|
||||
def __dir__(self) -> list[str]:
|
||||
attributes = list(super().__dir__())
|
||||
if '__fields__' in attributes:
|
||||
attributes.remove('__fields__')
|
||||
return attributes
|
||||
|
||||
|
||||
def init_private_attributes(self: BaseModel, context: Any, /) -> None:
|
||||
"""This function is meant to behave like a BaseModel method to initialise private attributes.
|
||||
|
||||
It takes context as an argument since that's what pydantic-core passes when calling it.
|
||||
|
||||
Args:
|
||||
self: The BaseModel instance.
|
||||
context: The context.
|
||||
"""
|
||||
if getattr(self, '__pydantic_private__', None) is None:
|
||||
pydantic_private = {}
|
||||
for name, private_attr in self.__private_attributes__.items():
|
||||
default = private_attr.get_default()
|
||||
if default is not PydanticUndefined:
|
||||
pydantic_private[name] = default
|
||||
object_setattr(self, '__pydantic_private__', pydantic_private)
|
||||
|
||||
|
||||
def get_model_post_init(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> Callable[..., Any] | None:
|
||||
"""Get the `model_post_init` method from the namespace or the class bases, or `None` if not defined."""
|
||||
if 'model_post_init' in namespace:
|
||||
return namespace['model_post_init']
|
||||
|
||||
BaseModel = import_cached_base_model()
|
||||
|
||||
model_post_init = get_attribute_from_bases(bases, 'model_post_init')
|
||||
if model_post_init is not BaseModel.model_post_init:
|
||||
return model_post_init
|
||||
|
||||
|
||||
def inspect_namespace( # noqa C901
|
||||
namespace: dict[str, Any],
|
||||
ignored_types: tuple[type[Any], ...],
|
||||
base_class_vars: set[str],
|
||||
base_class_fields: set[str],
|
||||
) -> dict[str, ModelPrivateAttr]:
|
||||
"""Iterate over the namespace and:
|
||||
* gather private attributes
|
||||
* check for items which look like fields but are not (e.g. have no annotation) and warn.
|
||||
|
||||
Args:
|
||||
namespace: The attribute dictionary of the class to be created.
|
||||
ignored_types: A tuple of ignore types.
|
||||
base_class_vars: A set of base class class variables.
|
||||
base_class_fields: A set of base class fields.
|
||||
|
||||
Returns:
|
||||
A dict contains private attributes info.
|
||||
|
||||
Raises:
|
||||
TypeError: If there is a `__root__` field in model.
|
||||
NameError: If private attribute name is invalid.
|
||||
PydanticUserError:
|
||||
- If a field does not have a type annotation.
|
||||
- If a field on base class was overridden by a non-annotated attribute.
|
||||
"""
|
||||
from ..fields import ModelPrivateAttr, PrivateAttr
|
||||
|
||||
FieldInfo = import_cached_field_info()
|
||||
|
||||
all_ignored_types = ignored_types + default_ignored_types()
|
||||
|
||||
private_attributes: dict[str, ModelPrivateAttr] = {}
|
||||
raw_annotations = namespace.get('__annotations__', {})
|
||||
|
||||
if '__root__' in raw_annotations or '__root__' in namespace:
|
||||
raise TypeError("To define root models, use `pydantic.RootModel` rather than a field called '__root__'")
|
||||
|
||||
ignored_names: set[str] = set()
|
||||
for var_name, value in list(namespace.items()):
|
||||
if var_name == 'model_config' or var_name == '__pydantic_extra__':
|
||||
continue
|
||||
elif (
|
||||
isinstance(value, type)
|
||||
and value.__module__ == namespace['__module__']
|
||||
and '__qualname__' in namespace
|
||||
and value.__qualname__.startswith(namespace['__qualname__'])
|
||||
):
|
||||
# `value` is a nested type defined in this namespace; don't error
|
||||
continue
|
||||
elif isinstance(value, all_ignored_types) or value.__class__.__module__ == 'functools':
|
||||
ignored_names.add(var_name)
|
||||
continue
|
||||
elif isinstance(value, ModelPrivateAttr):
|
||||
if var_name.startswith('__'):
|
||||
raise NameError(
|
||||
'Private attributes must not use dunder names;'
|
||||
f' use a single underscore prefix instead of {var_name!r}.'
|
||||
)
|
||||
elif is_valid_field_name(var_name):
|
||||
raise NameError(
|
||||
'Private attributes must not use valid field names;'
|
||||
f' use sunder names, e.g. {"_" + var_name!r} instead of {var_name!r}.'
|
||||
)
|
||||
private_attributes[var_name] = value
|
||||
del namespace[var_name]
|
||||
elif isinstance(value, FieldInfo) and not is_valid_field_name(var_name):
|
||||
suggested_name = var_name.lstrip('_') or 'my_field' # don't suggest '' for all-underscore name
|
||||
raise NameError(
|
||||
f'Fields must not use names with leading underscores;'
|
||||
f' e.g., use {suggested_name!r} instead of {var_name!r}.'
|
||||
)
|
||||
|
||||
elif var_name.startswith('__'):
|
||||
continue
|
||||
elif is_valid_privateattr_name(var_name):
|
||||
if var_name not in raw_annotations or not is_classvar_annotation(raw_annotations[var_name]):
|
||||
private_attributes[var_name] = cast(ModelPrivateAttr, PrivateAttr(default=value))
|
||||
del namespace[var_name]
|
||||
elif var_name in base_class_vars:
|
||||
continue
|
||||
elif var_name not in raw_annotations:
|
||||
if var_name in base_class_fields:
|
||||
raise PydanticUserError(
|
||||
f'Field {var_name!r} defined on a base class was overridden by a non-annotated attribute. '
|
||||
f'All field definitions, including overrides, require a type annotation.',
|
||||
code='model-field-overridden',
|
||||
)
|
||||
elif isinstance(value, FieldInfo):
|
||||
raise PydanticUserError(
|
||||
f'Field {var_name!r} requires a type annotation', code='model-field-missing-annotation'
|
||||
)
|
||||
else:
|
||||
raise PydanticUserError(
|
||||
f'A non-annotated attribute was detected: `{var_name} = {value!r}`. All model fields require a '
|
||||
f'type annotation; if `{var_name}` is not meant to be a field, you may be able to resolve this '
|
||||
f"error by annotating it as a `ClassVar` or updating `model_config['ignored_types']`.",
|
||||
code='model-field-missing-annotation',
|
||||
)
|
||||
|
||||
for ann_name, ann_type in raw_annotations.items():
|
||||
if (
|
||||
is_valid_privateattr_name(ann_name)
|
||||
and ann_name not in private_attributes
|
||||
and ann_name not in ignored_names
|
||||
# This condition can be a false negative when `ann_type` is stringified,
|
||||
# but it is handled in most cases in `set_model_fields`:
|
||||
and not is_classvar_annotation(ann_type)
|
||||
and ann_type not in all_ignored_types
|
||||
and getattr(ann_type, '__module__', None) != 'functools'
|
||||
):
|
||||
if isinstance(ann_type, str):
|
||||
# Walking up the frames to get the module namespace where the model is defined
|
||||
# (as the model class wasn't created yet, we unfortunately can't use `cls.__module__`):
|
||||
frame = sys._getframe(2)
|
||||
if frame is not None:
|
||||
try:
|
||||
ann_type = eval_type_backport(
|
||||
_make_forward_ref(ann_type, is_argument=False, is_class=True),
|
||||
globalns=frame.f_globals,
|
||||
localns=frame.f_locals,
|
||||
)
|
||||
except (NameError, TypeError):
|
||||
pass
|
||||
|
||||
if typing_objects.is_annotated(get_origin(ann_type)):
|
||||
_, *metadata = get_args(ann_type)
|
||||
private_attr = next((v for v in metadata if isinstance(v, ModelPrivateAttr)), None)
|
||||
if private_attr is not None:
|
||||
private_attributes[ann_name] = private_attr
|
||||
continue
|
||||
private_attributes[ann_name] = PrivateAttr()
|
||||
|
||||
return private_attributes
|
||||
|
||||
|
||||
def set_default_hash_func(cls: type[BaseModel], bases: tuple[type[Any], ...]) -> None:
|
||||
base_hash_func = get_attribute_from_bases(bases, '__hash__')
|
||||
new_hash_func = make_hash_func(cls)
|
||||
if base_hash_func in {None, object.__hash__} or getattr(base_hash_func, '__code__', None) == new_hash_func.__code__:
|
||||
# If `__hash__` is some default, we generate a hash function.
|
||||
# It will be `None` if not overridden from BaseModel.
|
||||
# It may be `object.__hash__` if there is another
|
||||
# parent class earlier in the bases which doesn't override `__hash__` (e.g. `typing.Generic`).
|
||||
# It may be a value set by `set_default_hash_func` if `cls` is a subclass of another frozen model.
|
||||
# In the last case we still need a new hash function to account for new `model_fields`.
|
||||
cls.__hash__ = new_hash_func
|
||||
|
||||
|
||||
def make_hash_func(cls: type[BaseModel]) -> Any:
|
||||
getter = operator.itemgetter(*cls.__pydantic_fields__.keys()) if cls.__pydantic_fields__ else lambda _: 0
|
||||
|
||||
def hash_func(self: Any) -> int:
|
||||
try:
|
||||
return hash(getter(self.__dict__))
|
||||
except KeyError:
|
||||
# In rare cases (such as when using the deprecated copy method), the __dict__ may not contain
|
||||
# all model fields, which is how we can get here.
|
||||
# getter(self.__dict__) is much faster than any 'safe' method that accounts for missing keys,
|
||||
# and wrapping it in a `try` doesn't slow things down much in the common case.
|
||||
return hash(getter(SafeGetItemProxy(self.__dict__)))
|
||||
|
||||
return hash_func
|
||||
|
||||
|
||||
def set_model_fields(
|
||||
cls: type[BaseModel],
|
||||
config_wrapper: ConfigWrapper,
|
||||
ns_resolver: NsResolver | None,
|
||||
) -> None:
|
||||
"""Collect and set `cls.__pydantic_fields__` and `cls.__class_vars__`.
|
||||
|
||||
Args:
|
||||
cls: BaseModel or dataclass.
|
||||
config_wrapper: The config wrapper instance.
|
||||
ns_resolver: Namespace resolver to use when getting model annotations.
|
||||
"""
|
||||
typevars_map = get_model_typevars_map(cls)
|
||||
fields, class_vars = collect_model_fields(cls, config_wrapper, ns_resolver, typevars_map=typevars_map)
|
||||
|
||||
cls.__pydantic_fields__ = fields
|
||||
cls.__class_vars__.update(class_vars)
|
||||
|
||||
for k in class_vars:
|
||||
# Class vars should not be private attributes
|
||||
# We remove them _here_ and not earlier because we rely on inspecting the class to determine its classvars,
|
||||
# but private attributes are determined by inspecting the namespace _prior_ to class creation.
|
||||
# In the case that a classvar with a leading-'_' is defined via a ForwardRef (e.g., when using
|
||||
# `__future__.annotations`), we want to remove the private attribute which was detected _before_ we knew it
|
||||
# evaluated to a classvar
|
||||
|
||||
value = cls.__private_attributes__.pop(k, None)
|
||||
if value is not None and value.default is not PydanticUndefined:
|
||||
setattr(cls, k, value.default)
|
||||
|
||||
|
||||
def complete_model_class(
|
||||
cls: type[BaseModel],
|
||||
config_wrapper: ConfigWrapper,
|
||||
*,
|
||||
raise_errors: bool = True,
|
||||
ns_resolver: NsResolver | None = None,
|
||||
create_model_module: str | None = None,
|
||||
) -> bool:
|
||||
"""Finish building a model class.
|
||||
|
||||
This logic must be called after class has been created since validation functions must be bound
|
||||
and `get_type_hints` requires a class object.
|
||||
|
||||
Args:
|
||||
cls: BaseModel or dataclass.
|
||||
config_wrapper: The config wrapper instance.
|
||||
raise_errors: Whether to raise errors.
|
||||
ns_resolver: The namespace resolver instance to use during schema building.
|
||||
create_model_module: The module of the class to be created, if created by `create_model`.
|
||||
|
||||
Returns:
|
||||
`True` if the model is successfully completed, else `False`.
|
||||
|
||||
Raises:
|
||||
PydanticUndefinedAnnotation: If `PydanticUndefinedAnnotation` occurs in`__get_pydantic_core_schema__`
|
||||
and `raise_errors=True`.
|
||||
"""
|
||||
typevars_map = get_model_typevars_map(cls)
|
||||
gen_schema = GenerateSchema(
|
||||
config_wrapper,
|
||||
ns_resolver,
|
||||
typevars_map,
|
||||
)
|
||||
|
||||
try:
|
||||
schema = gen_schema.generate_schema(cls)
|
||||
except PydanticUndefinedAnnotation as e:
|
||||
if raise_errors:
|
||||
raise
|
||||
set_model_mocks(cls, f'`{e.name}`')
|
||||
return False
|
||||
|
||||
core_config = config_wrapper.core_config(title=cls.__name__)
|
||||
|
||||
try:
|
||||
schema = gen_schema.clean_schema(schema)
|
||||
except InvalidSchemaError:
|
||||
set_model_mocks(cls)
|
||||
return False
|
||||
|
||||
# This needs to happen *after* model schema generation, as the return type
|
||||
# of the properties are evaluated and the `ComputedFieldInfo` are recreated:
|
||||
cls.__pydantic_computed_fields__ = {k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()}
|
||||
|
||||
set_deprecated_descriptors(cls)
|
||||
|
||||
cls.__pydantic_core_schema__ = schema
|
||||
|
||||
cls.__pydantic_validator__ = create_schema_validator(
|
||||
schema,
|
||||
cls,
|
||||
create_model_module or cls.__module__,
|
||||
cls.__qualname__,
|
||||
'create_model' if create_model_module else 'BaseModel',
|
||||
core_config,
|
||||
config_wrapper.plugin_settings,
|
||||
)
|
||||
cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config)
|
||||
cls.__pydantic_complete__ = True
|
||||
|
||||
# set __signature__ attr only for model class, but not for its instances
|
||||
# (because instances can define `__call__`, and `inspect.signature` shouldn't
|
||||
# use the `__signature__` attribute and instead generate from `__call__`).
|
||||
cls.__signature__ = LazyClassAttribute(
|
||||
'__signature__',
|
||||
partial(
|
||||
generate_pydantic_signature,
|
||||
init=cls.__init__,
|
||||
fields=cls.__pydantic_fields__,
|
||||
validate_by_name=config_wrapper.validate_by_name,
|
||||
extra=config_wrapper.extra,
|
||||
),
|
||||
)
|
||||
return True
|
||||
|
||||
|
||||
def set_deprecated_descriptors(cls: type[BaseModel]) -> None:
|
||||
"""Set data descriptors on the class for deprecated fields."""
|
||||
for field, field_info in cls.__pydantic_fields__.items():
|
||||
if (msg := field_info.deprecation_message) is not None:
|
||||
desc = _DeprecatedFieldDescriptor(msg)
|
||||
desc.__set_name__(cls, field)
|
||||
setattr(cls, field, desc)
|
||||
|
||||
for field, computed_field_info in cls.__pydantic_computed_fields__.items():
|
||||
if (
|
||||
(msg := computed_field_info.deprecation_message) is not None
|
||||
# Avoid having two warnings emitted:
|
||||
and not hasattr(unwrap_wrapped_function(computed_field_info.wrapped_property), '__deprecated__')
|
||||
):
|
||||
desc = _DeprecatedFieldDescriptor(msg, computed_field_info.wrapped_property)
|
||||
desc.__set_name__(cls, field)
|
||||
setattr(cls, field, desc)
|
||||
|
||||
|
||||
class _DeprecatedFieldDescriptor:
|
||||
"""Read-only data descriptor used to emit a runtime deprecation warning before accessing a deprecated field.
|
||||
|
||||
Attributes:
|
||||
msg: The deprecation message to be emitted.
|
||||
wrapped_property: The property instance if the deprecated field is a computed field, or `None`.
|
||||
field_name: The name of the field being deprecated.
|
||||
"""
|
||||
|
||||
field_name: str
|
||||
|
||||
def __init__(self, msg: str, wrapped_property: property | None = None) -> None:
|
||||
self.msg = msg
|
||||
self.wrapped_property = wrapped_property
|
||||
|
||||
def __set_name__(self, cls: type[BaseModel], name: str) -> None:
|
||||
self.field_name = name
|
||||
|
||||
def __get__(self, obj: BaseModel | None, obj_type: type[BaseModel] | None = None) -> Any:
|
||||
if obj is None:
|
||||
if self.wrapped_property is not None:
|
||||
return self.wrapped_property.__get__(None, obj_type)
|
||||
raise AttributeError(self.field_name)
|
||||
|
||||
warnings.warn(self.msg, builtins.DeprecationWarning, stacklevel=2)
|
||||
|
||||
if self.wrapped_property is not None:
|
||||
return self.wrapped_property.__get__(obj, obj_type)
|
||||
return obj.__dict__[self.field_name]
|
||||
|
||||
# Defined to make it a data descriptor and take precedence over the instance's dictionary.
|
||||
# Note that it will not be called when setting a value on a model instance
|
||||
# as `BaseModel.__setattr__` is defined and takes priority.
|
||||
def __set__(self, obj: Any, value: Any) -> NoReturn:
|
||||
raise AttributeError(self.field_name)
|
||||
|
||||
|
||||
class _PydanticWeakRef:
|
||||
"""Wrapper for `weakref.ref` that enables `pickle` serialization.
|
||||
|
||||
Cloudpickle fails to serialize `weakref.ref` objects due to an arcane error related
|
||||
to abstract base classes (`abc.ABC`). This class works around the issue by wrapping
|
||||
`weakref.ref` instead of subclassing it.
|
||||
|
||||
See https://github.com/pydantic/pydantic/issues/6763 for context.
|
||||
|
||||
Semantics:
|
||||
- If not pickled, behaves the same as a `weakref.ref`.
|
||||
- If pickled along with the referenced object, the same `weakref.ref` behavior
|
||||
will be maintained between them after unpickling.
|
||||
- If pickled without the referenced object, after unpickling the underlying
|
||||
reference will be cleared (`__call__` will always return `None`).
|
||||
"""
|
||||
|
||||
def __init__(self, obj: Any):
|
||||
if obj is None:
|
||||
# The object will be `None` upon deserialization if the serialized weakref
|
||||
# had lost its underlying object.
|
||||
self._wr = None
|
||||
else:
|
||||
self._wr = weakref.ref(obj)
|
||||
|
||||
def __call__(self) -> Any:
|
||||
if self._wr is None:
|
||||
return None
|
||||
else:
|
||||
return self._wr()
|
||||
|
||||
def __reduce__(self) -> tuple[Callable, tuple[weakref.ReferenceType | None]]:
|
||||
return _PydanticWeakRef, (self(),)
|
||||
|
||||
|
||||
def build_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None:
|
||||
"""Takes an input dictionary, and produces a new value that (invertibly) replaces the values with weakrefs.
|
||||
|
||||
We can't just use a WeakValueDictionary because many types (including int, str, etc.) can't be stored as values
|
||||
in a WeakValueDictionary.
|
||||
|
||||
The `unpack_lenient_weakvaluedict` function can be used to reverse this operation.
|
||||
"""
|
||||
if d is None:
|
||||
return None
|
||||
result = {}
|
||||
for k, v in d.items():
|
||||
try:
|
||||
proxy = _PydanticWeakRef(v)
|
||||
except TypeError:
|
||||
proxy = v
|
||||
result[k] = proxy
|
||||
return result
|
||||
|
||||
|
||||
def unpack_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None:
|
||||
"""Inverts the transform performed by `build_lenient_weakvaluedict`."""
|
||||
if d is None:
|
||||
return None
|
||||
|
||||
result = {}
|
||||
for k, v in d.items():
|
||||
if isinstance(v, _PydanticWeakRef):
|
||||
v = v()
|
||||
if v is not None:
|
||||
result[k] = v
|
||||
else:
|
||||
result[k] = v
|
||||
return result
|
||||
|
||||
|
||||
@cache
|
||||
def default_ignored_types() -> tuple[type[Any], ...]:
|
||||
from ..fields import ComputedFieldInfo
|
||||
|
||||
ignored_types = [
|
||||
FunctionType,
|
||||
property,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
PydanticDescriptorProxy,
|
||||
ComputedFieldInfo,
|
||||
TypeAliasType, # from `typing_extensions`
|
||||
]
|
||||
|
||||
if sys.version_info >= (3, 12):
|
||||
ignored_types.append(typing.TypeAliasType)
|
||||
|
||||
return tuple(ignored_types)
|
@ -0,0 +1,293 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
from collections.abc import Generator, Iterator, Mapping
|
||||
from contextlib import contextmanager
|
||||
from functools import cached_property
|
||||
from typing import Any, Callable, NamedTuple, TypeVar
|
||||
|
||||
from typing_extensions import ParamSpec, TypeAlias, TypeAliasType, TypeVarTuple
|
||||
|
||||
GlobalsNamespace: TypeAlias = 'dict[str, Any]'
|
||||
"""A global namespace.
|
||||
|
||||
In most cases, this is a reference to the `__dict__` attribute of a module.
|
||||
This namespace type is expected as the `globals` argument during annotations evaluation.
|
||||
"""
|
||||
|
||||
MappingNamespace: TypeAlias = Mapping[str, Any]
|
||||
"""Any kind of namespace.
|
||||
|
||||
In most cases, this is a local namespace (e.g. the `__dict__` attribute of a class,
|
||||
the [`f_locals`][frame.f_locals] attribute of a frame object, when dealing with types
|
||||
defined inside functions).
|
||||
This namespace type is expected as the `locals` argument during annotations evaluation.
|
||||
"""
|
||||
|
||||
_TypeVarLike: TypeAlias = 'TypeVar | ParamSpec | TypeVarTuple'
|
||||
|
||||
|
||||
class NamespacesTuple(NamedTuple):
|
||||
"""A tuple of globals and locals to be used during annotations evaluation.
|
||||
|
||||
This datastructure is defined as a named tuple so that it can easily be unpacked:
|
||||
|
||||
```python {lint="skip" test="skip"}
|
||||
def eval_type(typ: type[Any], ns: NamespacesTuple) -> None:
|
||||
return eval(typ, *ns)
|
||||
```
|
||||
"""
|
||||
|
||||
globals: GlobalsNamespace
|
||||
"""The namespace to be used as the `globals` argument during annotations evaluation."""
|
||||
|
||||
locals: MappingNamespace
|
||||
"""The namespace to be used as the `locals` argument during annotations evaluation."""
|
||||
|
||||
|
||||
def get_module_ns_of(obj: Any) -> dict[str, Any]:
|
||||
"""Get the namespace of the module where the object is defined.
|
||||
|
||||
Caution: this function does not return a copy of the module namespace, so the result
|
||||
should not be mutated. The burden of enforcing this is on the caller.
|
||||
"""
|
||||
module_name = getattr(obj, '__module__', None)
|
||||
if module_name:
|
||||
try:
|
||||
return sys.modules[module_name].__dict__
|
||||
except KeyError:
|
||||
# happens occasionally, see https://github.com/pydantic/pydantic/issues/2363
|
||||
return {}
|
||||
return {}
|
||||
|
||||
|
||||
# Note that this class is almost identical to `collections.ChainMap`, but need to enforce
|
||||
# immutable mappings here:
|
||||
class LazyLocalNamespace(Mapping[str, Any]):
|
||||
"""A lazily evaluated mapping, to be used as the `locals` argument during annotations evaluation.
|
||||
|
||||
While the [`eval`][eval] function expects a mapping as the `locals` argument, it only
|
||||
performs `__getitem__` calls. The [`Mapping`][collections.abc.Mapping] abstract base class
|
||||
is fully implemented only for type checking purposes.
|
||||
|
||||
Args:
|
||||
*namespaces: The namespaces to consider, in ascending order of priority.
|
||||
|
||||
Example:
|
||||
```python {lint="skip" test="skip"}
|
||||
ns = LazyLocalNamespace({'a': 1, 'b': 2}, {'a': 3})
|
||||
ns['a']
|
||||
#> 3
|
||||
ns['b']
|
||||
#> 2
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, *namespaces: MappingNamespace) -> None:
|
||||
self._namespaces = namespaces
|
||||
|
||||
@cached_property
|
||||
def data(self) -> dict[str, Any]:
|
||||
return {k: v for ns in self._namespaces for k, v in ns.items()}
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
return self.data[key]
|
||||
|
||||
def __contains__(self, key: object) -> bool:
|
||||
return key in self.data
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return iter(self.data)
|
||||
|
||||
|
||||
def ns_for_function(obj: Callable[..., Any], parent_namespace: MappingNamespace | None = None) -> NamespacesTuple:
|
||||
"""Return the global and local namespaces to be used when evaluating annotations for the provided function.
|
||||
|
||||
The global namespace will be the `__dict__` attribute of the module the function was defined in.
|
||||
The local namespace will contain the `__type_params__` introduced by PEP 695.
|
||||
|
||||
Args:
|
||||
obj: The object to use when building namespaces.
|
||||
parent_namespace: Optional namespace to be added with the lowest priority in the local namespace.
|
||||
If the passed function is a method, the `parent_namespace` will be the namespace of the class
|
||||
the method is defined in. Thus, we also fetch type `__type_params__` from there (i.e. the
|
||||
class-scoped type variables).
|
||||
"""
|
||||
locals_list: list[MappingNamespace] = []
|
||||
if parent_namespace is not None:
|
||||
locals_list.append(parent_namespace)
|
||||
|
||||
# Get the `__type_params__` attribute introduced by PEP 695.
|
||||
# Note that the `typing._eval_type` function expects type params to be
|
||||
# passed as a separate argument. However, internally, `_eval_type` calls
|
||||
# `ForwardRef._evaluate` which will merge type params with the localns,
|
||||
# essentially mimicking what we do here.
|
||||
type_params: tuple[_TypeVarLike, ...] = getattr(obj, '__type_params__', ())
|
||||
if parent_namespace is not None:
|
||||
# We also fetch type params from the parent namespace. If present, it probably
|
||||
# means the function was defined in a class. This is to support the following:
|
||||
# https://github.com/python/cpython/issues/124089.
|
||||
type_params += parent_namespace.get('__type_params__', ())
|
||||
|
||||
locals_list.append({t.__name__: t for t in type_params})
|
||||
|
||||
# What about short-cirtuiting to `obj.__globals__`?
|
||||
globalns = get_module_ns_of(obj)
|
||||
|
||||
return NamespacesTuple(globalns, LazyLocalNamespace(*locals_list))
|
||||
|
||||
|
||||
class NsResolver:
|
||||
"""A class responsible for the namespaces resolving logic for annotations evaluation.
|
||||
|
||||
This class handles the namespace logic when evaluating annotations mainly for class objects.
|
||||
|
||||
It holds a stack of classes that are being inspected during the core schema building,
|
||||
and the `types_namespace` property exposes the globals and locals to be used for
|
||||
type annotation evaluation. Additionally -- if no class is present in the stack -- a
|
||||
fallback globals and locals can be provided using the `namespaces_tuple` argument
|
||||
(this is useful when generating a schema for a simple annotation, e.g. when using
|
||||
`TypeAdapter`).
|
||||
|
||||
The namespace creation logic is unfortunately flawed in some cases, for backwards
|
||||
compatibility reasons and to better support valid edge cases. See the description
|
||||
for the `parent_namespace` argument and the example for more details.
|
||||
|
||||
Args:
|
||||
namespaces_tuple: The default globals and locals to use if no class is present
|
||||
on the stack. This can be useful when using the `GenerateSchema` class
|
||||
with `TypeAdapter`, where the "type" being analyzed is a simple annotation.
|
||||
parent_namespace: An optional parent namespace that will be added to the locals
|
||||
with the lowest priority. For a given class defined in a function, the locals
|
||||
of this function are usually used as the parent namespace:
|
||||
|
||||
```python {lint="skip" test="skip"}
|
||||
from pydantic import BaseModel
|
||||
|
||||
def func() -> None:
|
||||
SomeType = int
|
||||
|
||||
class Model(BaseModel):
|
||||
f: 'SomeType'
|
||||
|
||||
# when collecting fields, an namespace resolver instance will be created
|
||||
# this way:
|
||||
# ns_resolver = NsResolver(parent_namespace={'SomeType': SomeType})
|
||||
```
|
||||
|
||||
For backwards compatibility reasons and to support valid edge cases, this parent
|
||||
namespace will be used for *every* type being pushed to the stack. In the future,
|
||||
we might want to be smarter by only doing so when the type being pushed is defined
|
||||
in the same module as the parent namespace.
|
||||
|
||||
Example:
|
||||
```python {lint="skip" test="skip"}
|
||||
ns_resolver = NsResolver(
|
||||
parent_namespace={'fallback': 1},
|
||||
)
|
||||
|
||||
class Sub:
|
||||
m: 'Model'
|
||||
|
||||
class Model:
|
||||
some_local = 1
|
||||
sub: Sub
|
||||
|
||||
ns_resolver = NsResolver()
|
||||
|
||||
# This is roughly what happens when we build a core schema for `Model`:
|
||||
with ns_resolver.push(Model):
|
||||
ns_resolver.types_namespace
|
||||
#> NamespacesTuple({'Sub': Sub}, {'Model': Model, 'some_local': 1})
|
||||
# First thing to notice here, the model being pushed is added to the locals.
|
||||
# Because `NsResolver` is being used during the model definition, it is not
|
||||
# yet added to the globals. This is useful when resolving self-referencing annotations.
|
||||
|
||||
with ns_resolver.push(Sub):
|
||||
ns_resolver.types_namespace
|
||||
#> NamespacesTuple({'Sub': Sub}, {'Sub': Sub, 'Model': Model})
|
||||
# Second thing to notice: `Sub` is present in both the globals and locals.
|
||||
# This is not an issue, just that as described above, the model being pushed
|
||||
# is added to the locals, but it happens to be present in the globals as well
|
||||
# because it is already defined.
|
||||
# Third thing to notice: `Model` is also added in locals. This is a backwards
|
||||
# compatibility workaround that allows for `Sub` to be able to resolve `'Model'`
|
||||
# correctly (as otherwise models would have to be rebuilt even though this
|
||||
# doesn't look necessary).
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
namespaces_tuple: NamespacesTuple | None = None,
|
||||
parent_namespace: MappingNamespace | None = None,
|
||||
) -> None:
|
||||
self._base_ns_tuple = namespaces_tuple or NamespacesTuple({}, {})
|
||||
self._parent_ns = parent_namespace
|
||||
self._types_stack: list[type[Any] | TypeAliasType] = []
|
||||
|
||||
@cached_property
|
||||
def types_namespace(self) -> NamespacesTuple:
|
||||
"""The current global and local namespaces to be used for annotations evaluation."""
|
||||
if not self._types_stack:
|
||||
# TODO: should we merge the parent namespace here?
|
||||
# This is relevant for TypeAdapter, where there are no types on the stack, and we might
|
||||
# need access to the parent_ns. Right now, we sidestep this in `type_adapter.py` by passing
|
||||
# locals to both parent_ns and the base_ns_tuple, but this is a bit hacky.
|
||||
# we might consider something like:
|
||||
# if self._parent_ns is not None:
|
||||
# # Hacky workarounds, see class docstring:
|
||||
# # An optional parent namespace that will be added to the locals with the lowest priority
|
||||
# locals_list: list[MappingNamespace] = [self._parent_ns, self._base_ns_tuple.locals]
|
||||
# return NamespacesTuple(self._base_ns_tuple.globals, LazyLocalNamespace(*locals_list))
|
||||
return self._base_ns_tuple
|
||||
|
||||
typ = self._types_stack[-1]
|
||||
|
||||
globalns = get_module_ns_of(typ)
|
||||
|
||||
locals_list: list[MappingNamespace] = []
|
||||
# Hacky workarounds, see class docstring:
|
||||
# An optional parent namespace that will be added to the locals with the lowest priority
|
||||
if self._parent_ns is not None:
|
||||
locals_list.append(self._parent_ns)
|
||||
if len(self._types_stack) > 1:
|
||||
first_type = self._types_stack[0]
|
||||
locals_list.append({first_type.__name__: first_type})
|
||||
|
||||
# Adding `__type_params__` *before* `vars(typ)`, as the latter takes priority
|
||||
# (see https://github.com/python/cpython/pull/120272).
|
||||
# TODO `typ.__type_params__` when we drop support for Python 3.11:
|
||||
type_params: tuple[_TypeVarLike, ...] = getattr(typ, '__type_params__', ())
|
||||
if type_params:
|
||||
# Adding `__type_params__` is mostly useful for generic classes defined using
|
||||
# PEP 695 syntax *and* using forward annotations (see the example in
|
||||
# https://github.com/python/cpython/issues/114053). For TypeAliasType instances,
|
||||
# it is way less common, but still required if using a string annotation in the alias
|
||||
# value, e.g. `type A[T] = 'T'` (which is not necessary in most cases).
|
||||
locals_list.append({t.__name__: t for t in type_params})
|
||||
|
||||
# TypeAliasType instances don't have a `__dict__` attribute, so the check
|
||||
# is necessary:
|
||||
if hasattr(typ, '__dict__'):
|
||||
locals_list.append(vars(typ))
|
||||
|
||||
# The `len(self._types_stack) > 1` check above prevents this from being added twice:
|
||||
locals_list.append({typ.__name__: typ})
|
||||
|
||||
return NamespacesTuple(globalns, LazyLocalNamespace(*locals_list))
|
||||
|
||||
@contextmanager
|
||||
def push(self, typ: type[Any] | TypeAliasType, /) -> Generator[None]:
|
||||
"""Push a type to the stack."""
|
||||
self._types_stack.append(typ)
|
||||
# Reset the cached property:
|
||||
self.__dict__.pop('types_namespace', None)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
self._types_stack.pop()
|
||||
self.__dict__.pop('types_namespace', None)
|
125
venv/lib/python3.11/site-packages/pydantic/_internal/_repr.py
Normal file
125
venv/lib/python3.11/site-packages/pydantic/_internal/_repr.py
Normal file
@ -0,0 +1,125 @@
|
||||
"""Tools to provide pretty/human-readable display of objects."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import types
|
||||
import typing
|
||||
from typing import Any
|
||||
|
||||
import typing_extensions
|
||||
from typing_inspection import typing_objects
|
||||
from typing_inspection.introspection import is_union_origin
|
||||
|
||||
from . import _typing_extra
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
ReprArgs: typing_extensions.TypeAlias = 'typing.Iterable[tuple[str | None, Any]]'
|
||||
RichReprResult: typing_extensions.TypeAlias = (
|
||||
'typing.Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]'
|
||||
)
|
||||
|
||||
|
||||
class PlainRepr(str):
|
||||
"""String class where repr doesn't include quotes. Useful with Representation when you want to return a string
|
||||
representation of something that is valid (or pseudo-valid) python.
|
||||
"""
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return str(self)
|
||||
|
||||
|
||||
class Representation:
|
||||
# Mixin to provide `__str__`, `__repr__`, and `__pretty__` and `__rich_repr__` methods.
|
||||
# `__pretty__` is used by [devtools](https://python-devtools.helpmanual.io/).
|
||||
# `__rich_repr__` is used by [rich](https://rich.readthedocs.io/en/stable/pretty.html).
|
||||
# (this is not a docstring to avoid adding a docstring to classes which inherit from Representation)
|
||||
|
||||
# we don't want to use a type annotation here as it can break get_type_hints
|
||||
__slots__ = () # type: typing.Collection[str]
|
||||
|
||||
def __repr_args__(self) -> ReprArgs:
|
||||
"""Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
|
||||
|
||||
Can either return:
|
||||
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
|
||||
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
|
||||
"""
|
||||
attrs_names = self.__slots__
|
||||
if not attrs_names and hasattr(self, '__dict__'):
|
||||
attrs_names = self.__dict__.keys()
|
||||
attrs = ((s, getattr(self, s)) for s in attrs_names)
|
||||
return [(a, v if v is not self else self.__repr_recursion__(v)) for a, v in attrs if v is not None]
|
||||
|
||||
def __repr_name__(self) -> str:
|
||||
"""Name of the instance's class, used in __repr__."""
|
||||
return self.__class__.__name__
|
||||
|
||||
def __repr_recursion__(self, object: Any) -> str:
|
||||
"""Returns the string representation of a recursive object."""
|
||||
# This is copied over from the stdlib `pprint` module:
|
||||
return f'<Recursion on {type(object).__name__} with id={id(object)}>'
|
||||
|
||||
def __repr_str__(self, join_str: str) -> str:
|
||||
return join_str.join(repr(v) if a is None else f'{a}={v!r}' for a, v in self.__repr_args__())
|
||||
|
||||
def __pretty__(self, fmt: typing.Callable[[Any], Any], **kwargs: Any) -> typing.Generator[Any, None, None]:
|
||||
"""Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects."""
|
||||
yield self.__repr_name__() + '('
|
||||
yield 1
|
||||
for name, value in self.__repr_args__():
|
||||
if name is not None:
|
||||
yield name + '='
|
||||
yield fmt(value)
|
||||
yield ','
|
||||
yield 0
|
||||
yield -1
|
||||
yield ')'
|
||||
|
||||
def __rich_repr__(self) -> RichReprResult:
|
||||
"""Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects."""
|
||||
for name, field_repr in self.__repr_args__():
|
||||
if name is None:
|
||||
yield field_repr
|
||||
else:
|
||||
yield name, field_repr
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.__repr_str__(' ')
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f'{self.__repr_name__()}({self.__repr_str__(", ")})'
|
||||
|
||||
|
||||
def display_as_type(obj: Any) -> str:
|
||||
"""Pretty representation of a type, should be as close as possible to the original type definition string.
|
||||
|
||||
Takes some logic from `typing._type_repr`.
|
||||
"""
|
||||
if isinstance(obj, (types.FunctionType, types.BuiltinFunctionType)):
|
||||
return obj.__name__
|
||||
elif obj is ...:
|
||||
return '...'
|
||||
elif isinstance(obj, Representation):
|
||||
return repr(obj)
|
||||
elif isinstance(obj, typing.ForwardRef) or typing_objects.is_typealiastype(obj):
|
||||
return str(obj)
|
||||
|
||||
if not isinstance(obj, (_typing_extra.typing_base, _typing_extra.WithArgsTypes, type)):
|
||||
obj = obj.__class__
|
||||
|
||||
if is_union_origin(typing_extensions.get_origin(obj)):
|
||||
args = ', '.join(map(display_as_type, typing_extensions.get_args(obj)))
|
||||
return f'Union[{args}]'
|
||||
elif isinstance(obj, _typing_extra.WithArgsTypes):
|
||||
if typing_objects.is_literal(typing_extensions.get_origin(obj)):
|
||||
args = ', '.join(map(repr, typing_extensions.get_args(obj)))
|
||||
else:
|
||||
args = ', '.join(map(display_as_type, typing_extensions.get_args(obj)))
|
||||
try:
|
||||
return f'{obj.__qualname__}[{args}]'
|
||||
except AttributeError:
|
||||
return str(obj).replace('typing.', '').replace('typing_extensions.', '') # handles TypeAliasType in 3.12
|
||||
elif isinstance(obj, type):
|
||||
return obj.__qualname__
|
||||
else:
|
||||
return repr(obj).replace('typing.', '').replace('typing_extensions.', '')
|
@ -0,0 +1,204 @@
|
||||
# pyright: reportTypedDictNotRequiredAccess=false, reportGeneralTypeIssues=false, reportArgumentType=false, reportAttributeAccessIssue=false
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import TypedDict
|
||||
|
||||
from pydantic_core.core_schema import ComputedField, CoreSchema, DefinitionReferenceSchema, SerSchema
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
AllSchemas: TypeAlias = 'CoreSchema | SerSchema | ComputedField'
|
||||
|
||||
|
||||
class GatherResult(TypedDict):
|
||||
"""Schema traversing result."""
|
||||
|
||||
collected_references: dict[str, DefinitionReferenceSchema | None]
|
||||
"""The collected definition references.
|
||||
|
||||
If a definition reference schema can be inlined, it means that there is
|
||||
only one in the whole core schema. As such, it is stored as the value.
|
||||
Otherwise, the value is set to `None`.
|
||||
"""
|
||||
|
||||
deferred_discriminator_schemas: list[CoreSchema]
|
||||
"""The list of core schemas having the discriminator application deferred."""
|
||||
|
||||
|
||||
class MissingDefinitionError(LookupError):
|
||||
"""A reference was pointing to a non-existing core schema."""
|
||||
|
||||
def __init__(self, schema_reference: str, /) -> None:
|
||||
self.schema_reference = schema_reference
|
||||
|
||||
|
||||
@dataclass
|
||||
class GatherContext:
|
||||
"""The current context used during core schema traversing.
|
||||
|
||||
Context instances should only be used during schema traversing.
|
||||
"""
|
||||
|
||||
definitions: dict[str, CoreSchema]
|
||||
"""The available definitions."""
|
||||
|
||||
deferred_discriminator_schemas: list[CoreSchema] = field(init=False, default_factory=list)
|
||||
"""The list of core schemas having the discriminator application deferred.
|
||||
|
||||
Internally, these core schemas have a specific key set in the core metadata dict.
|
||||
"""
|
||||
|
||||
collected_references: dict[str, DefinitionReferenceSchema | None] = field(init=False, default_factory=dict)
|
||||
"""The collected definition references.
|
||||
|
||||
If a definition reference schema can be inlined, it means that there is
|
||||
only one in the whole core schema. As such, it is stored as the value.
|
||||
Otherwise, the value is set to `None`.
|
||||
|
||||
During schema traversing, definition reference schemas can be added as candidates, or removed
|
||||
(by setting the value to `None`).
|
||||
"""
|
||||
|
||||
|
||||
def traverse_metadata(schema: AllSchemas, ctx: GatherContext) -> None:
|
||||
meta = schema.get('metadata')
|
||||
if meta is not None and 'pydantic_internal_union_discriminator' in meta:
|
||||
ctx.deferred_discriminator_schemas.append(schema) # pyright: ignore[reportArgumentType]
|
||||
|
||||
|
||||
def traverse_definition_ref(def_ref_schema: DefinitionReferenceSchema, ctx: GatherContext) -> None:
|
||||
schema_ref = def_ref_schema['schema_ref']
|
||||
|
||||
if schema_ref not in ctx.collected_references:
|
||||
definition = ctx.definitions.get(schema_ref)
|
||||
if definition is None:
|
||||
raise MissingDefinitionError(schema_ref)
|
||||
|
||||
# The `'definition-ref'` schema was only encountered once, make it
|
||||
# a candidate to be inlined:
|
||||
ctx.collected_references[schema_ref] = def_ref_schema
|
||||
traverse_schema(definition, ctx)
|
||||
if 'serialization' in def_ref_schema:
|
||||
traverse_schema(def_ref_schema['serialization'], ctx)
|
||||
traverse_metadata(def_ref_schema, ctx)
|
||||
else:
|
||||
# The `'definition-ref'` schema was already encountered, meaning
|
||||
# the previously encountered schema (and this one) can't be inlined:
|
||||
ctx.collected_references[schema_ref] = None
|
||||
|
||||
|
||||
def traverse_schema(schema: AllSchemas, context: GatherContext) -> None:
|
||||
# TODO When we drop 3.9, use a match statement to get better type checking and remove
|
||||
# file-level type ignore.
|
||||
# (the `'type'` could also be fetched in every `if/elif` statement, but this alters performance).
|
||||
schema_type = schema['type']
|
||||
|
||||
if schema_type == 'definition-ref':
|
||||
traverse_definition_ref(schema, context)
|
||||
# `traverse_definition_ref` handles the possible serialization and metadata schemas:
|
||||
return
|
||||
elif schema_type == 'definitions':
|
||||
traverse_schema(schema['schema'], context)
|
||||
for definition in schema['definitions']:
|
||||
traverse_schema(definition, context)
|
||||
elif schema_type in {'list', 'set', 'frozenset', 'generator'}:
|
||||
if 'items_schema' in schema:
|
||||
traverse_schema(schema['items_schema'], context)
|
||||
elif schema_type == 'tuple':
|
||||
if 'items_schema' in schema:
|
||||
for s in schema['items_schema']:
|
||||
traverse_schema(s, context)
|
||||
elif schema_type == 'dict':
|
||||
if 'keys_schema' in schema:
|
||||
traverse_schema(schema['keys_schema'], context)
|
||||
if 'values_schema' in schema:
|
||||
traverse_schema(schema['values_schema'], context)
|
||||
elif schema_type == 'union':
|
||||
for choice in schema['choices']:
|
||||
if isinstance(choice, tuple):
|
||||
traverse_schema(choice[0], context)
|
||||
else:
|
||||
traverse_schema(choice, context)
|
||||
elif schema_type == 'tagged-union':
|
||||
for v in schema['choices'].values():
|
||||
traverse_schema(v, context)
|
||||
elif schema_type == 'chain':
|
||||
for step in schema['steps']:
|
||||
traverse_schema(step, context)
|
||||
elif schema_type == 'lax-or-strict':
|
||||
traverse_schema(schema['lax_schema'], context)
|
||||
traverse_schema(schema['strict_schema'], context)
|
||||
elif schema_type == 'json-or-python':
|
||||
traverse_schema(schema['json_schema'], context)
|
||||
traverse_schema(schema['python_schema'], context)
|
||||
elif schema_type in {'model-fields', 'typed-dict'}:
|
||||
if 'extras_schema' in schema:
|
||||
traverse_schema(schema['extras_schema'], context)
|
||||
if 'computed_fields' in schema:
|
||||
for s in schema['computed_fields']:
|
||||
traverse_schema(s, context)
|
||||
for s in schema['fields'].values():
|
||||
traverse_schema(s, context)
|
||||
elif schema_type == 'dataclass-args':
|
||||
if 'computed_fields' in schema:
|
||||
for s in schema['computed_fields']:
|
||||
traverse_schema(s, context)
|
||||
for s in schema['fields']:
|
||||
traverse_schema(s, context)
|
||||
elif schema_type == 'arguments':
|
||||
for s in schema['arguments_schema']:
|
||||
traverse_schema(s['schema'], context)
|
||||
if 'var_args_schema' in schema:
|
||||
traverse_schema(schema['var_args_schema'], context)
|
||||
if 'var_kwargs_schema' in schema:
|
||||
traverse_schema(schema['var_kwargs_schema'], context)
|
||||
elif schema_type == 'arguments-v3':
|
||||
for s in schema['arguments_schema']:
|
||||
traverse_schema(s['schema'], context)
|
||||
elif schema_type == 'call':
|
||||
traverse_schema(schema['arguments_schema'], context)
|
||||
if 'return_schema' in schema:
|
||||
traverse_schema(schema['return_schema'], context)
|
||||
elif schema_type == 'computed-field':
|
||||
traverse_schema(schema['return_schema'], context)
|
||||
elif schema_type == 'function-plain':
|
||||
# TODO duplicate schema types for serializers and validators, needs to be deduplicated.
|
||||
if 'return_schema' in schema:
|
||||
traverse_schema(schema['return_schema'], context)
|
||||
if 'json_schema_input_schema' in schema:
|
||||
traverse_schema(schema['json_schema_input_schema'], context)
|
||||
elif schema_type == 'function-wrap':
|
||||
# TODO duplicate schema types for serializers and validators, needs to be deduplicated.
|
||||
if 'return_schema' in schema:
|
||||
traverse_schema(schema['return_schema'], context)
|
||||
if 'schema' in schema:
|
||||
traverse_schema(schema['schema'], context)
|
||||
if 'json_schema_input_schema' in schema:
|
||||
traverse_schema(schema['json_schema_input_schema'], context)
|
||||
else:
|
||||
if 'schema' in schema:
|
||||
traverse_schema(schema['schema'], context)
|
||||
|
||||
if 'serialization' in schema:
|
||||
traverse_schema(schema['serialization'], context)
|
||||
traverse_metadata(schema, context)
|
||||
|
||||
|
||||
def gather_schemas_for_cleaning(schema: CoreSchema, definitions: dict[str, CoreSchema]) -> GatherResult:
|
||||
"""Traverse the core schema and definitions and return the necessary information for schema cleaning.
|
||||
|
||||
During the core schema traversing, any `'definition-ref'` schema is:
|
||||
|
||||
- Validated: the reference must point to an existing definition. If this is not the case, a
|
||||
`MissingDefinitionError` exception is raised.
|
||||
- Stored in the context: the actual reference is stored in the context. Depending on whether
|
||||
the `'definition-ref'` schema is encountered more that once, the schema itself is also
|
||||
saved in the context to be inlined (i.e. replaced by the definition it points to).
|
||||
"""
|
||||
context = GatherContext(definitions)
|
||||
traverse_schema(schema, context)
|
||||
|
||||
return {
|
||||
'collected_references': context.collected_references,
|
||||
'deferred_discriminator_schemas': context.deferred_discriminator_schemas,
|
||||
}
|
@ -0,0 +1,125 @@
|
||||
"""Types and utility functions used by various other internal tools."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any, Callable, Literal
|
||||
|
||||
from pydantic_core import core_schema
|
||||
|
||||
from ..annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..json_schema import GenerateJsonSchema, JsonSchemaValue
|
||||
from ._core_utils import CoreSchemaOrField
|
||||
from ._generate_schema import GenerateSchema
|
||||
from ._namespace_utils import NamespacesTuple
|
||||
|
||||
GetJsonSchemaFunction = Callable[[CoreSchemaOrField, GetJsonSchemaHandler], JsonSchemaValue]
|
||||
HandlerOverride = Callable[[CoreSchemaOrField], JsonSchemaValue]
|
||||
|
||||
|
||||
class GenerateJsonSchemaHandler(GetJsonSchemaHandler):
|
||||
"""JsonSchemaHandler implementation that doesn't do ref unwrapping by default.
|
||||
|
||||
This is used for any Annotated metadata so that we don't end up with conflicting
|
||||
modifications to the definition schema.
|
||||
|
||||
Used internally by Pydantic, please do not rely on this implementation.
|
||||
See `GetJsonSchemaHandler` for the handler API.
|
||||
"""
|
||||
|
||||
def __init__(self, generate_json_schema: GenerateJsonSchema, handler_override: HandlerOverride | None) -> None:
|
||||
self.generate_json_schema = generate_json_schema
|
||||
self.handler = handler_override or generate_json_schema.generate_inner
|
||||
self.mode = generate_json_schema.mode
|
||||
|
||||
def __call__(self, core_schema: CoreSchemaOrField, /) -> JsonSchemaValue:
|
||||
return self.handler(core_schema)
|
||||
|
||||
def resolve_ref_schema(self, maybe_ref_json_schema: JsonSchemaValue) -> JsonSchemaValue:
|
||||
"""Resolves `$ref` in the json schema.
|
||||
|
||||
This returns the input json schema if there is no `$ref` in json schema.
|
||||
|
||||
Args:
|
||||
maybe_ref_json_schema: The input json schema that may contains `$ref`.
|
||||
|
||||
Returns:
|
||||
Resolved json schema.
|
||||
|
||||
Raises:
|
||||
LookupError: If it can't find the definition for `$ref`.
|
||||
"""
|
||||
if '$ref' not in maybe_ref_json_schema:
|
||||
return maybe_ref_json_schema
|
||||
ref = maybe_ref_json_schema['$ref']
|
||||
json_schema = self.generate_json_schema.get_schema_from_definitions(ref)
|
||||
if json_schema is None:
|
||||
raise LookupError(
|
||||
f'Could not find a ref for {ref}.'
|
||||
' Maybe you tried to call resolve_ref_schema from within a recursive model?'
|
||||
)
|
||||
return json_schema
|
||||
|
||||
|
||||
class CallbackGetCoreSchemaHandler(GetCoreSchemaHandler):
|
||||
"""Wrapper to use an arbitrary function as a `GetCoreSchemaHandler`.
|
||||
|
||||
Used internally by Pydantic, please do not rely on this implementation.
|
||||
See `GetCoreSchemaHandler` for the handler API.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
handler: Callable[[Any], core_schema.CoreSchema],
|
||||
generate_schema: GenerateSchema,
|
||||
ref_mode: Literal['to-def', 'unpack'] = 'to-def',
|
||||
) -> None:
|
||||
self._handler = handler
|
||||
self._generate_schema = generate_schema
|
||||
self._ref_mode = ref_mode
|
||||
|
||||
def __call__(self, source_type: Any, /) -> core_schema.CoreSchema:
|
||||
schema = self._handler(source_type)
|
||||
if self._ref_mode == 'to-def':
|
||||
ref = schema.get('ref')
|
||||
if ref is not None:
|
||||
return self._generate_schema.defs.create_definition_reference_schema(schema)
|
||||
return schema
|
||||
else: # ref_mode = 'unpack'
|
||||
return self.resolve_ref_schema(schema)
|
||||
|
||||
def _get_types_namespace(self) -> NamespacesTuple:
|
||||
return self._generate_schema._types_namespace
|
||||
|
||||
def generate_schema(self, source_type: Any, /) -> core_schema.CoreSchema:
|
||||
return self._generate_schema.generate_schema(source_type)
|
||||
|
||||
@property
|
||||
def field_name(self) -> str | None:
|
||||
return self._generate_schema.field_name_stack.get()
|
||||
|
||||
def resolve_ref_schema(self, maybe_ref_schema: core_schema.CoreSchema) -> core_schema.CoreSchema:
|
||||
"""Resolves reference in the core schema.
|
||||
|
||||
Args:
|
||||
maybe_ref_schema: The input core schema that may contains reference.
|
||||
|
||||
Returns:
|
||||
Resolved core schema.
|
||||
|
||||
Raises:
|
||||
LookupError: If it can't find the definition for reference.
|
||||
"""
|
||||
if maybe_ref_schema['type'] == 'definition-ref':
|
||||
ref = maybe_ref_schema['schema_ref']
|
||||
definition = self._generate_schema.defs.get_schema_from_ref(ref)
|
||||
if definition is None:
|
||||
raise LookupError(
|
||||
f'Could not find a ref for {ref}.'
|
||||
' Maybe you tried to call resolve_ref_schema from within a recursive model?'
|
||||
)
|
||||
return definition
|
||||
elif maybe_ref_schema['type'] == 'definitions':
|
||||
return self.resolve_ref_schema(maybe_ref_schema['schema'])
|
||||
return maybe_ref_schema
|
@ -0,0 +1,53 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import collections
|
||||
import collections.abc
|
||||
import typing
|
||||
from typing import Any
|
||||
|
||||
from pydantic_core import PydanticOmit, core_schema
|
||||
|
||||
SEQUENCE_ORIGIN_MAP: dict[Any, Any] = {
|
||||
typing.Deque: collections.deque, # noqa: UP006
|
||||
collections.deque: collections.deque,
|
||||
list: list,
|
||||
typing.List: list, # noqa: UP006
|
||||
tuple: tuple,
|
||||
typing.Tuple: tuple, # noqa: UP006
|
||||
set: set,
|
||||
typing.AbstractSet: set,
|
||||
typing.Set: set, # noqa: UP006
|
||||
frozenset: frozenset,
|
||||
typing.FrozenSet: frozenset, # noqa: UP006
|
||||
typing.Sequence: list,
|
||||
typing.MutableSequence: list,
|
||||
typing.MutableSet: set,
|
||||
# this doesn't handle subclasses of these
|
||||
# parametrized typing.Set creates one of these
|
||||
collections.abc.MutableSet: set,
|
||||
collections.abc.Set: frozenset,
|
||||
}
|
||||
|
||||
|
||||
def serialize_sequence_via_list(
|
||||
v: Any, handler: core_schema.SerializerFunctionWrapHandler, info: core_schema.SerializationInfo
|
||||
) -> Any:
|
||||
items: list[Any] = []
|
||||
|
||||
mapped_origin = SEQUENCE_ORIGIN_MAP.get(type(v), None)
|
||||
if mapped_origin is None:
|
||||
# we shouldn't hit this branch, should probably add a serialization error or something
|
||||
return v
|
||||
|
||||
for index, item in enumerate(v):
|
||||
try:
|
||||
v = handler(item, index)
|
||||
except PydanticOmit:
|
||||
pass
|
||||
else:
|
||||
items.append(v)
|
||||
|
||||
if info.mode_is_json():
|
||||
return items
|
||||
else:
|
||||
return mapped_origin(items)
|
@ -0,0 +1,188 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import dataclasses
|
||||
from inspect import Parameter, Signature, signature
|
||||
from typing import TYPE_CHECKING, Any, Callable
|
||||
|
||||
from pydantic_core import PydanticUndefined
|
||||
|
||||
from ._utils import is_valid_identifier
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..config import ExtraValues
|
||||
from ..fields import FieldInfo
|
||||
|
||||
|
||||
# Copied over from stdlib dataclasses
|
||||
class _HAS_DEFAULT_FACTORY_CLASS:
|
||||
def __repr__(self):
|
||||
return '<factory>'
|
||||
|
||||
|
||||
_HAS_DEFAULT_FACTORY = _HAS_DEFAULT_FACTORY_CLASS()
|
||||
|
||||
|
||||
def _field_name_for_signature(field_name: str, field_info: FieldInfo) -> str:
|
||||
"""Extract the correct name to use for the field when generating a signature.
|
||||
|
||||
Assuming the field has a valid alias, this will return the alias. Otherwise, it will return the field name.
|
||||
First priority is given to the alias, then the validation_alias, then the field name.
|
||||
|
||||
Args:
|
||||
field_name: The name of the field
|
||||
field_info: The corresponding FieldInfo object.
|
||||
|
||||
Returns:
|
||||
The correct name to use when generating a signature.
|
||||
"""
|
||||
if isinstance(field_info.alias, str) and is_valid_identifier(field_info.alias):
|
||||
return field_info.alias
|
||||
if isinstance(field_info.validation_alias, str) and is_valid_identifier(field_info.validation_alias):
|
||||
return field_info.validation_alias
|
||||
|
||||
return field_name
|
||||
|
||||
|
||||
def _process_param_defaults(param: Parameter) -> Parameter:
|
||||
"""Modify the signature for a parameter in a dataclass where the default value is a FieldInfo instance.
|
||||
|
||||
Args:
|
||||
param (Parameter): The parameter
|
||||
|
||||
Returns:
|
||||
Parameter: The custom processed parameter
|
||||
"""
|
||||
from ..fields import FieldInfo
|
||||
|
||||
param_default = param.default
|
||||
if isinstance(param_default, FieldInfo):
|
||||
annotation = param.annotation
|
||||
# Replace the annotation if appropriate
|
||||
# inspect does "clever" things to show annotations as strings because we have
|
||||
# `from __future__ import annotations` in main, we don't want that
|
||||
if annotation == 'Any':
|
||||
annotation = Any
|
||||
|
||||
# Replace the field default
|
||||
default = param_default.default
|
||||
if default is PydanticUndefined:
|
||||
if param_default.default_factory is PydanticUndefined:
|
||||
default = Signature.empty
|
||||
else:
|
||||
# this is used by dataclasses to indicate a factory exists:
|
||||
default = dataclasses._HAS_DEFAULT_FACTORY # type: ignore
|
||||
return param.replace(
|
||||
annotation=annotation, name=_field_name_for_signature(param.name, param_default), default=default
|
||||
)
|
||||
return param
|
||||
|
||||
|
||||
def _generate_signature_parameters( # noqa: C901 (ignore complexity, could use a refactor)
|
||||
init: Callable[..., None],
|
||||
fields: dict[str, FieldInfo],
|
||||
validate_by_name: bool,
|
||||
extra: ExtraValues | None,
|
||||
) -> dict[str, Parameter]:
|
||||
"""Generate a mapping of parameter names to Parameter objects for a pydantic BaseModel or dataclass."""
|
||||
from itertools import islice
|
||||
|
||||
present_params = signature(init).parameters.values()
|
||||
merged_params: dict[str, Parameter] = {}
|
||||
var_kw = None
|
||||
use_var_kw = False
|
||||
|
||||
for param in islice(present_params, 1, None): # skip self arg
|
||||
# inspect does "clever" things to show annotations as strings because we have
|
||||
# `from __future__ import annotations` in main, we don't want that
|
||||
if fields.get(param.name):
|
||||
# exclude params with init=False
|
||||
if getattr(fields[param.name], 'init', True) is False:
|
||||
continue
|
||||
param = param.replace(name=_field_name_for_signature(param.name, fields[param.name]))
|
||||
if param.annotation == 'Any':
|
||||
param = param.replace(annotation=Any)
|
||||
if param.kind is param.VAR_KEYWORD:
|
||||
var_kw = param
|
||||
continue
|
||||
merged_params[param.name] = param
|
||||
|
||||
if var_kw: # if custom init has no var_kw, fields which are not declared in it cannot be passed through
|
||||
allow_names = validate_by_name
|
||||
for field_name, field in fields.items():
|
||||
# when alias is a str it should be used for signature generation
|
||||
param_name = _field_name_for_signature(field_name, field)
|
||||
|
||||
if field_name in merged_params or param_name in merged_params:
|
||||
continue
|
||||
|
||||
if not is_valid_identifier(param_name):
|
||||
if allow_names:
|
||||
param_name = field_name
|
||||
else:
|
||||
use_var_kw = True
|
||||
continue
|
||||
|
||||
if field.is_required():
|
||||
default = Parameter.empty
|
||||
elif field.default_factory is not None:
|
||||
# Mimics stdlib dataclasses:
|
||||
default = _HAS_DEFAULT_FACTORY
|
||||
else:
|
||||
default = field.default
|
||||
merged_params[param_name] = Parameter(
|
||||
param_name,
|
||||
Parameter.KEYWORD_ONLY,
|
||||
annotation=field.rebuild_annotation(),
|
||||
default=default,
|
||||
)
|
||||
|
||||
if extra == 'allow':
|
||||
use_var_kw = True
|
||||
|
||||
if var_kw and use_var_kw:
|
||||
# Make sure the parameter for extra kwargs
|
||||
# does not have the same name as a field
|
||||
default_model_signature = [
|
||||
('self', Parameter.POSITIONAL_ONLY),
|
||||
('data', Parameter.VAR_KEYWORD),
|
||||
]
|
||||
if [(p.name, p.kind) for p in present_params] == default_model_signature:
|
||||
# if this is the standard model signature, use extra_data as the extra args name
|
||||
var_kw_name = 'extra_data'
|
||||
else:
|
||||
# else start from var_kw
|
||||
var_kw_name = var_kw.name
|
||||
|
||||
# generate a name that's definitely unique
|
||||
while var_kw_name in fields:
|
||||
var_kw_name += '_'
|
||||
merged_params[var_kw_name] = var_kw.replace(name=var_kw_name)
|
||||
|
||||
return merged_params
|
||||
|
||||
|
||||
def generate_pydantic_signature(
|
||||
init: Callable[..., None],
|
||||
fields: dict[str, FieldInfo],
|
||||
validate_by_name: bool,
|
||||
extra: ExtraValues | None,
|
||||
is_dataclass: bool = False,
|
||||
) -> Signature:
|
||||
"""Generate signature for a pydantic BaseModel or dataclass.
|
||||
|
||||
Args:
|
||||
init: The class init.
|
||||
fields: The model fields.
|
||||
validate_by_name: The `validate_by_name` value of the config.
|
||||
extra: The `extra` value of the config.
|
||||
is_dataclass: Whether the model is a dataclass.
|
||||
|
||||
Returns:
|
||||
The dataclass/BaseModel subclass signature.
|
||||
"""
|
||||
merged_params = _generate_signature_parameters(init, fields, validate_by_name, extra)
|
||||
|
||||
if is_dataclass:
|
||||
merged_params = {k: _process_param_defaults(v) for k, v in merged_params.items()}
|
||||
|
||||
return Signature(parameters=list(merged_params.values()), return_annotation=None)
|
@ -0,0 +1,714 @@
|
||||
"""Logic for interacting with type annotations, mostly extensions, shims and hacks to wrap Python's typing module."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import collections.abc
|
||||
import re
|
||||
import sys
|
||||
import types
|
||||
import typing
|
||||
from functools import partial
|
||||
from typing import TYPE_CHECKING, Any, Callable, cast
|
||||
|
||||
import typing_extensions
|
||||
from typing_extensions import deprecated, get_args, get_origin
|
||||
from typing_inspection import typing_objects
|
||||
from typing_inspection.introspection import is_union_origin
|
||||
|
||||
from pydantic.version import version_short
|
||||
|
||||
from ._namespace_utils import GlobalsNamespace, MappingNamespace, NsResolver, get_module_ns_of
|
||||
|
||||
if sys.version_info < (3, 10):
|
||||
NoneType = type(None)
|
||||
EllipsisType = type(Ellipsis)
|
||||
else:
|
||||
from types import EllipsisType as EllipsisType
|
||||
from types import NoneType as NoneType
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pydantic import BaseModel
|
||||
|
||||
# As per https://typing-extensions.readthedocs.io/en/latest/#runtime-use-of-types,
|
||||
# always check for both `typing` and `typing_extensions` variants of a typing construct.
|
||||
# (this is implemented differently than the suggested approach in the `typing_extensions`
|
||||
# docs for performance).
|
||||
|
||||
|
||||
_t_annotated = typing.Annotated
|
||||
_te_annotated = typing_extensions.Annotated
|
||||
|
||||
|
||||
def is_annotated(tp: Any, /) -> bool:
|
||||
"""Return whether the provided argument is a `Annotated` special form.
|
||||
|
||||
```python {test="skip" lint="skip"}
|
||||
is_annotated(Annotated[int, ...])
|
||||
#> True
|
||||
```
|
||||
"""
|
||||
origin = get_origin(tp)
|
||||
return origin is _t_annotated or origin is _te_annotated
|
||||
|
||||
|
||||
def annotated_type(tp: Any, /) -> Any | None:
|
||||
"""Return the type of the `Annotated` special form, or `None`."""
|
||||
return tp.__origin__ if typing_objects.is_annotated(get_origin(tp)) else None
|
||||
|
||||
|
||||
def unpack_type(tp: Any, /) -> Any | None:
|
||||
"""Return the type wrapped by the `Unpack` special form, or `None`."""
|
||||
return get_args(tp)[0] if typing_objects.is_unpack(get_origin(tp)) else None
|
||||
|
||||
|
||||
def is_hashable(tp: Any, /) -> bool:
|
||||
"""Return whether the provided argument is the `Hashable` class.
|
||||
|
||||
```python {test="skip" lint="skip"}
|
||||
is_hashable(Hashable)
|
||||
#> True
|
||||
```
|
||||
"""
|
||||
# `get_origin` is documented as normalizing any typing-module aliases to `collections` classes,
|
||||
# hence the second check:
|
||||
return tp is collections.abc.Hashable or get_origin(tp) is collections.abc.Hashable
|
||||
|
||||
|
||||
def is_callable(tp: Any, /) -> bool:
|
||||
"""Return whether the provided argument is a `Callable`, parametrized or not.
|
||||
|
||||
```python {test="skip" lint="skip"}
|
||||
is_callable(Callable[[int], str])
|
||||
#> True
|
||||
is_callable(typing.Callable)
|
||||
#> True
|
||||
is_callable(collections.abc.Callable)
|
||||
#> True
|
||||
```
|
||||
"""
|
||||
# `get_origin` is documented as normalizing any typing-module aliases to `collections` classes,
|
||||
# hence the second check:
|
||||
return tp is collections.abc.Callable or get_origin(tp) is collections.abc.Callable
|
||||
|
||||
|
||||
_classvar_re = re.compile(r'((\w+\.)?Annotated\[)?(\w+\.)?ClassVar\[')
|
||||
|
||||
|
||||
def is_classvar_annotation(tp: Any, /) -> bool:
|
||||
"""Return whether the provided argument represents a class variable annotation.
|
||||
|
||||
Although not explicitly stated by the typing specification, `ClassVar` can be used
|
||||
inside `Annotated` and as such, this function checks for this specific scenario.
|
||||
|
||||
Because this function is used to detect class variables before evaluating forward references
|
||||
(or because evaluation failed), we also implement a naive regex match implementation. This is
|
||||
required because class variables are inspected before fields are collected, so we try to be
|
||||
as accurate as possible.
|
||||
"""
|
||||
if typing_objects.is_classvar(tp):
|
||||
return True
|
||||
|
||||
origin = get_origin(tp)
|
||||
|
||||
if typing_objects.is_classvar(origin):
|
||||
return True
|
||||
|
||||
if typing_objects.is_annotated(origin):
|
||||
annotated_type = tp.__origin__
|
||||
if typing_objects.is_classvar(annotated_type) or typing_objects.is_classvar(get_origin(annotated_type)):
|
||||
return True
|
||||
|
||||
str_ann: str | None = None
|
||||
if isinstance(tp, typing.ForwardRef):
|
||||
str_ann = tp.__forward_arg__
|
||||
if isinstance(tp, str):
|
||||
str_ann = tp
|
||||
|
||||
if str_ann is not None and _classvar_re.match(str_ann):
|
||||
# stdlib dataclasses do something similar, although a bit more advanced
|
||||
# (see `dataclass._is_type`).
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
_t_final = typing.Final
|
||||
_te_final = typing_extensions.Final
|
||||
|
||||
|
||||
# TODO implement `is_finalvar_annotation` as Final can be wrapped with other special forms:
|
||||
def is_finalvar(tp: Any, /) -> bool:
|
||||
"""Return whether the provided argument is a `Final` special form, parametrized or not.
|
||||
|
||||
```python {test="skip" lint="skip"}
|
||||
is_finalvar(Final[int])
|
||||
#> True
|
||||
is_finalvar(Final)
|
||||
#> True
|
||||
"""
|
||||
# Final is not necessarily parametrized:
|
||||
if tp is _t_final or tp is _te_final:
|
||||
return True
|
||||
origin = get_origin(tp)
|
||||
return origin is _t_final or origin is _te_final
|
||||
|
||||
|
||||
_NONE_TYPES: tuple[Any, ...] = (None, NoneType, typing.Literal[None], typing_extensions.Literal[None])
|
||||
|
||||
|
||||
def is_none_type(tp: Any, /) -> bool:
|
||||
"""Return whether the argument represents the `None` type as part of an annotation.
|
||||
|
||||
```python {test="skip" lint="skip"}
|
||||
is_none_type(None)
|
||||
#> True
|
||||
is_none_type(NoneType)
|
||||
#> True
|
||||
is_none_type(Literal[None])
|
||||
#> True
|
||||
is_none_type(type[None])
|
||||
#> False
|
||||
"""
|
||||
return tp in _NONE_TYPES
|
||||
|
||||
|
||||
def is_namedtuple(tp: Any, /) -> bool:
|
||||
"""Return whether the provided argument is a named tuple class.
|
||||
|
||||
The class can be created using `typing.NamedTuple` or `collections.namedtuple`.
|
||||
Parametrized generic classes are *not* assumed to be named tuples.
|
||||
"""
|
||||
from ._utils import lenient_issubclass # circ. import
|
||||
|
||||
return lenient_issubclass(tp, tuple) and hasattr(tp, '_fields')
|
||||
|
||||
|
||||
# TODO In 2.12, delete this export. It is currently defined only to not break
|
||||
# pydantic-settings which relies on it:
|
||||
origin_is_union = is_union_origin
|
||||
|
||||
|
||||
def is_generic_alias(tp: Any, /) -> bool:
|
||||
return isinstance(tp, (types.GenericAlias, typing._GenericAlias)) # pyright: ignore[reportAttributeAccessIssue]
|
||||
|
||||
|
||||
# TODO: Ideally, we should avoid relying on the private `typing` constructs:
|
||||
|
||||
if sys.version_info < (3, 10):
|
||||
WithArgsTypes: tuple[Any, ...] = (typing._GenericAlias, types.GenericAlias) # pyright: ignore[reportAttributeAccessIssue]
|
||||
else:
|
||||
WithArgsTypes: tuple[Any, ...] = (typing._GenericAlias, types.GenericAlias, types.UnionType) # pyright: ignore[reportAttributeAccessIssue]
|
||||
|
||||
|
||||
# Similarly, we shouldn't rely on this `_Final` class, which is even more private than `_GenericAlias`:
|
||||
typing_base: Any = typing._Final # pyright: ignore[reportAttributeAccessIssue]
|
||||
|
||||
|
||||
### Annotation evaluations functions:
|
||||
|
||||
|
||||
def parent_frame_namespace(*, parent_depth: int = 2, force: bool = False) -> dict[str, Any] | None:
|
||||
"""Fetch the local namespace of the parent frame where this function is called.
|
||||
|
||||
Using this function is mostly useful to resolve forward annotations pointing to members defined in a local namespace,
|
||||
such as assignments inside a function. Using the standard library tools, it is currently not possible to resolve
|
||||
such annotations:
|
||||
|
||||
```python {lint="skip" test="skip"}
|
||||
from typing import get_type_hints
|
||||
|
||||
def func() -> None:
|
||||
Alias = int
|
||||
|
||||
class C:
|
||||
a: 'Alias'
|
||||
|
||||
# Raises a `NameError: 'Alias' is not defined`
|
||||
get_type_hints(C)
|
||||
```
|
||||
|
||||
Pydantic uses this function when a Pydantic model is being defined to fetch the parent frame locals. However,
|
||||
this only allows us to fetch the parent frame namespace and not other parents (e.g. a model defined in a function,
|
||||
itself defined in another function). Inspecting the next outer frames (using `f_back`) is not reliable enough
|
||||
(see https://discuss.python.org/t/20659).
|
||||
|
||||
Because this function is mostly used to better resolve forward annotations, nothing is returned if the parent frame's
|
||||
code object is defined at the module level. In this case, the locals of the frame will be the same as the module
|
||||
globals where the class is defined (see `_namespace_utils.get_module_ns_of`). However, if you still want to fetch
|
||||
the module globals (e.g. when rebuilding a model, where the frame where the rebuild call is performed might contain
|
||||
members that you want to use for forward annotations evaluation), you can use the `force` parameter.
|
||||
|
||||
Args:
|
||||
parent_depth: The depth at which to get the frame. Defaults to 2, meaning the parent frame where this function
|
||||
is called will be used.
|
||||
force: Whether to always return the frame locals, even if the frame's code object is defined at the module level.
|
||||
|
||||
Returns:
|
||||
The locals of the namespace, or `None` if it was skipped as per the described logic.
|
||||
"""
|
||||
frame = sys._getframe(parent_depth)
|
||||
|
||||
if frame.f_code.co_name.startswith('<generic parameters of'):
|
||||
# As `parent_frame_namespace` is mostly called in `ModelMetaclass.__new__`,
|
||||
# the parent frame can be the annotation scope if the PEP 695 generic syntax is used.
|
||||
# (see https://docs.python.org/3/reference/executionmodel.html#annotation-scopes,
|
||||
# https://docs.python.org/3/reference/compound_stmts.html#generic-classes).
|
||||
# In this case, the code name is set to `<generic parameters of MyClass>`,
|
||||
# and we need to skip this frame as it is irrelevant.
|
||||
frame = cast(types.FrameType, frame.f_back) # guaranteed to not be `None`
|
||||
|
||||
# note, we don't copy frame.f_locals here (or during the last return call), because we don't expect the namespace to be
|
||||
# modified down the line if this becomes a problem, we could implement some sort of frozen mapping structure to enforce this.
|
||||
if force:
|
||||
return frame.f_locals
|
||||
|
||||
# If either of the following conditions are true, the class is defined at the top module level.
|
||||
# To better understand why we need both of these checks, see
|
||||
# https://github.com/pydantic/pydantic/pull/10113#discussion_r1714981531.
|
||||
if frame.f_back is None or frame.f_code.co_name == '<module>':
|
||||
return None
|
||||
|
||||
return frame.f_locals
|
||||
|
||||
|
||||
def _type_convert(arg: Any) -> Any:
|
||||
"""Convert `None` to `NoneType` and strings to `ForwardRef` instances.
|
||||
|
||||
This is a backport of the private `typing._type_convert` function. When
|
||||
evaluating a type, `ForwardRef._evaluate` ends up being called, and is
|
||||
responsible for making this conversion. However, we still have to apply
|
||||
it for the first argument passed to our type evaluation functions, similarly
|
||||
to the `typing.get_type_hints` function.
|
||||
"""
|
||||
if arg is None:
|
||||
return NoneType
|
||||
if isinstance(arg, str):
|
||||
# Like `typing.get_type_hints`, assume the arg can be in any context,
|
||||
# hence the proper `is_argument` and `is_class` args:
|
||||
return _make_forward_ref(arg, is_argument=False, is_class=True)
|
||||
return arg
|
||||
|
||||
|
||||
def get_model_type_hints(
|
||||
obj: type[BaseModel],
|
||||
*,
|
||||
ns_resolver: NsResolver | None = None,
|
||||
) -> dict[str, tuple[Any, bool]]:
|
||||
"""Collect annotations from a Pydantic model class, including those from parent classes.
|
||||
|
||||
Args:
|
||||
obj: The Pydantic model to inspect.
|
||||
ns_resolver: A namespace resolver instance to use. Defaults to an empty instance.
|
||||
|
||||
Returns:
|
||||
A dictionary mapping annotation names to a two-tuple: the first element is the evaluated
|
||||
type or the original annotation if a `NameError` occurred, the second element is a boolean
|
||||
indicating if whether the evaluation succeeded.
|
||||
"""
|
||||
hints: dict[str, Any] | dict[str, tuple[Any, bool]] = {}
|
||||
ns_resolver = ns_resolver or NsResolver()
|
||||
|
||||
for base in reversed(obj.__mro__):
|
||||
ann: dict[str, Any] | None = base.__dict__.get('__annotations__')
|
||||
if not ann or isinstance(ann, types.GetSetDescriptorType):
|
||||
continue
|
||||
with ns_resolver.push(base):
|
||||
globalns, localns = ns_resolver.types_namespace
|
||||
for name, value in ann.items():
|
||||
if name.startswith('_'):
|
||||
# For private attributes, we only need the annotation to detect the `ClassVar` special form.
|
||||
# For this reason, we still try to evaluate it, but we also catch any possible exception (on
|
||||
# top of the `NameError`s caught in `try_eval_type`) that could happen so that users are free
|
||||
# to use any kind of forward annotation for private fields (e.g. circular imports, new typing
|
||||
# syntax, etc).
|
||||
try:
|
||||
hints[name] = try_eval_type(value, globalns, localns)
|
||||
except Exception:
|
||||
hints[name] = (value, False)
|
||||
else:
|
||||
hints[name] = try_eval_type(value, globalns, localns)
|
||||
return hints
|
||||
|
||||
|
||||
def get_cls_type_hints(
|
||||
obj: type[Any],
|
||||
*,
|
||||
ns_resolver: NsResolver | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Collect annotations from a class, including those from parent classes.
|
||||
|
||||
Args:
|
||||
obj: The class to inspect.
|
||||
ns_resolver: A namespace resolver instance to use. Defaults to an empty instance.
|
||||
"""
|
||||
hints: dict[str, Any] | dict[str, tuple[Any, bool]] = {}
|
||||
ns_resolver = ns_resolver or NsResolver()
|
||||
|
||||
for base in reversed(obj.__mro__):
|
||||
ann: dict[str, Any] | None = base.__dict__.get('__annotations__')
|
||||
if not ann or isinstance(ann, types.GetSetDescriptorType):
|
||||
continue
|
||||
with ns_resolver.push(base):
|
||||
globalns, localns = ns_resolver.types_namespace
|
||||
for name, value in ann.items():
|
||||
hints[name] = eval_type(value, globalns, localns)
|
||||
return hints
|
||||
|
||||
|
||||
def try_eval_type(
|
||||
value: Any,
|
||||
globalns: GlobalsNamespace | None = None,
|
||||
localns: MappingNamespace | None = None,
|
||||
) -> tuple[Any, bool]:
|
||||
"""Try evaluating the annotation using the provided namespaces.
|
||||
|
||||
Args:
|
||||
value: The value to evaluate. If `None`, it will be replaced by `type[None]`. If an instance
|
||||
of `str`, it will be converted to a `ForwardRef`.
|
||||
localns: The global namespace to use during annotation evaluation.
|
||||
globalns: The local namespace to use during annotation evaluation.
|
||||
|
||||
Returns:
|
||||
A two-tuple containing the possibly evaluated type and a boolean indicating
|
||||
whether the evaluation succeeded or not.
|
||||
"""
|
||||
value = _type_convert(value)
|
||||
|
||||
try:
|
||||
return eval_type_backport(value, globalns, localns), True
|
||||
except NameError:
|
||||
return value, False
|
||||
|
||||
|
||||
def eval_type(
|
||||
value: Any,
|
||||
globalns: GlobalsNamespace | None = None,
|
||||
localns: MappingNamespace | None = None,
|
||||
) -> Any:
|
||||
"""Evaluate the annotation using the provided namespaces.
|
||||
|
||||
Args:
|
||||
value: The value to evaluate. If `None`, it will be replaced by `type[None]`. If an instance
|
||||
of `str`, it will be converted to a `ForwardRef`.
|
||||
localns: The global namespace to use during annotation evaluation.
|
||||
globalns: The local namespace to use during annotation evaluation.
|
||||
"""
|
||||
value = _type_convert(value)
|
||||
return eval_type_backport(value, globalns, localns)
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`eval_type_lenient` is deprecated, use `try_eval_type` instead.',
|
||||
category=None,
|
||||
)
|
||||
def eval_type_lenient(
|
||||
value: Any,
|
||||
globalns: GlobalsNamespace | None = None,
|
||||
localns: MappingNamespace | None = None,
|
||||
) -> Any:
|
||||
ev, _ = try_eval_type(value, globalns, localns)
|
||||
return ev
|
||||
|
||||
|
||||
def eval_type_backport(
|
||||
value: Any,
|
||||
globalns: GlobalsNamespace | None = None,
|
||||
localns: MappingNamespace | None = None,
|
||||
type_params: tuple[Any, ...] | None = None,
|
||||
) -> Any:
|
||||
"""An enhanced version of `typing._eval_type` which will fall back to using the `eval_type_backport`
|
||||
package if it's installed to let older Python versions use newer typing constructs.
|
||||
|
||||
Specifically, this transforms `X | Y` into `typing.Union[X, Y]` and `list[X]` into `typing.List[X]`
|
||||
(as well as all the types made generic in PEP 585) if the original syntax is not supported in the
|
||||
current Python version.
|
||||
|
||||
This function will also display a helpful error if the value passed fails to evaluate.
|
||||
"""
|
||||
try:
|
||||
return _eval_type_backport(value, globalns, localns, type_params)
|
||||
except TypeError as e:
|
||||
if 'Unable to evaluate type annotation' in str(e):
|
||||
raise
|
||||
|
||||
# If it is a `TypeError` and value isn't a `ForwardRef`, it would have failed during annotation definition.
|
||||
# Thus we assert here for type checking purposes:
|
||||
assert isinstance(value, typing.ForwardRef)
|
||||
|
||||
message = f'Unable to evaluate type annotation {value.__forward_arg__!r}.'
|
||||
if sys.version_info >= (3, 11):
|
||||
e.add_note(message)
|
||||
raise
|
||||
else:
|
||||
raise TypeError(message) from e
|
||||
except RecursionError as e:
|
||||
# TODO ideally recursion errors should be checked in `eval_type` above, but `eval_type_backport`
|
||||
# is used directly in some places.
|
||||
message = (
|
||||
"If you made use of an implicit recursive type alias (e.g. `MyType = list['MyType']), "
|
||||
'consider using PEP 695 type aliases instead. For more details, refer to the documentation: '
|
||||
f'https://docs.pydantic.dev/{version_short()}/concepts/types/#named-recursive-types'
|
||||
)
|
||||
if sys.version_info >= (3, 11):
|
||||
e.add_note(message)
|
||||
raise
|
||||
else:
|
||||
raise RecursionError(f'{e.args[0]}\n{message}')
|
||||
|
||||
|
||||
def _eval_type_backport(
|
||||
value: Any,
|
||||
globalns: GlobalsNamespace | None = None,
|
||||
localns: MappingNamespace | None = None,
|
||||
type_params: tuple[Any, ...] | None = None,
|
||||
) -> Any:
|
||||
try:
|
||||
return _eval_type(value, globalns, localns, type_params)
|
||||
except TypeError as e:
|
||||
if not (isinstance(value, typing.ForwardRef) and is_backport_fixable_error(e)):
|
||||
raise
|
||||
|
||||
try:
|
||||
from eval_type_backport import eval_type_backport
|
||||
except ImportError:
|
||||
raise TypeError(
|
||||
f'Unable to evaluate type annotation {value.__forward_arg__!r}. If you are making use '
|
||||
'of the new typing syntax (unions using `|` since Python 3.10 or builtins subscripting '
|
||||
'since Python 3.9), you should either replace the use of new syntax with the existing '
|
||||
'`typing` constructs or install the `eval_type_backport` package.'
|
||||
) from e
|
||||
|
||||
return eval_type_backport(
|
||||
value,
|
||||
globalns,
|
||||
localns, # pyright: ignore[reportArgumentType], waiting on a new `eval_type_backport` release.
|
||||
try_default=False,
|
||||
)
|
||||
|
||||
|
||||
def _eval_type(
|
||||
value: Any,
|
||||
globalns: GlobalsNamespace | None = None,
|
||||
localns: MappingNamespace | None = None,
|
||||
type_params: tuple[Any, ...] | None = None,
|
||||
) -> Any:
|
||||
if sys.version_info >= (3, 13):
|
||||
return typing._eval_type( # type: ignore
|
||||
value, globalns, localns, type_params=type_params
|
||||
)
|
||||
else:
|
||||
return typing._eval_type( # type: ignore
|
||||
value, globalns, localns
|
||||
)
|
||||
|
||||
|
||||
def is_backport_fixable_error(e: TypeError) -> bool:
|
||||
msg = str(e)
|
||||
|
||||
return sys.version_info < (3, 10) and msg.startswith('unsupported operand type(s) for |: ')
|
||||
|
||||
|
||||
def get_function_type_hints(
|
||||
function: Callable[..., Any],
|
||||
*,
|
||||
include_keys: set[str] | None = None,
|
||||
globalns: GlobalsNamespace | None = None,
|
||||
localns: MappingNamespace | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Return type hints for a function.
|
||||
|
||||
This is similar to the `typing.get_type_hints` function, with a few differences:
|
||||
- Support `functools.partial` by using the underlying `func` attribute.
|
||||
- Do not wrap type annotation of a parameter with `Optional` if it has a default value of `None`
|
||||
(related bug: https://github.com/python/cpython/issues/90353, only fixed in 3.11+).
|
||||
"""
|
||||
try:
|
||||
if isinstance(function, partial):
|
||||
annotations = function.func.__annotations__
|
||||
else:
|
||||
annotations = function.__annotations__
|
||||
except AttributeError:
|
||||
# Some functions (e.g. builtins) don't have annotations:
|
||||
return {}
|
||||
|
||||
if globalns is None:
|
||||
globalns = get_module_ns_of(function)
|
||||
type_params: tuple[Any, ...] | None = None
|
||||
if localns is None:
|
||||
# If localns was specified, it is assumed to already contain type params. This is because
|
||||
# Pydantic has more advanced logic to do so (see `_namespace_utils.ns_for_function`).
|
||||
type_params = getattr(function, '__type_params__', ())
|
||||
|
||||
type_hints = {}
|
||||
for name, value in annotations.items():
|
||||
if include_keys is not None and name not in include_keys:
|
||||
continue
|
||||
if value is None:
|
||||
value = NoneType
|
||||
elif isinstance(value, str):
|
||||
value = _make_forward_ref(value)
|
||||
|
||||
type_hints[name] = eval_type_backport(value, globalns, localns, type_params)
|
||||
|
||||
return type_hints
|
||||
|
||||
|
||||
if sys.version_info < (3, 9, 8) or (3, 10) <= sys.version_info < (3, 10, 1):
|
||||
|
||||
def _make_forward_ref(
|
||||
arg: Any,
|
||||
is_argument: bool = True,
|
||||
*,
|
||||
is_class: bool = False,
|
||||
) -> typing.ForwardRef:
|
||||
"""Wrapper for ForwardRef that accounts for the `is_class` argument missing in older versions.
|
||||
The `module` argument is omitted as it breaks <3.9.8, =3.10.0 and isn't used in the calls below.
|
||||
|
||||
See https://github.com/python/cpython/pull/28560 for some background.
|
||||
The backport happened on 3.9.8, see:
|
||||
https://github.com/pydantic/pydantic/discussions/6244#discussioncomment-6275458,
|
||||
and on 3.10.1 for the 3.10 branch, see:
|
||||
https://github.com/pydantic/pydantic/issues/6912
|
||||
|
||||
Implemented as EAFP with memory.
|
||||
"""
|
||||
return typing.ForwardRef(arg, is_argument)
|
||||
|
||||
else:
|
||||
_make_forward_ref = typing.ForwardRef
|
||||
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
get_type_hints = typing.get_type_hints
|
||||
|
||||
else:
|
||||
"""
|
||||
For older versions of python, we have a custom implementation of `get_type_hints` which is a close as possible to
|
||||
the implementation in CPython 3.10.8.
|
||||
"""
|
||||
|
||||
@typing.no_type_check
|
||||
def get_type_hints( # noqa: C901
|
||||
obj: Any,
|
||||
globalns: dict[str, Any] | None = None,
|
||||
localns: dict[str, Any] | None = None,
|
||||
include_extras: bool = False,
|
||||
) -> dict[str, Any]: # pragma: no cover
|
||||
"""Taken verbatim from python 3.10.8 unchanged, except:
|
||||
* type annotations of the function definition above.
|
||||
* prefixing `typing.` where appropriate
|
||||
* Use `_make_forward_ref` instead of `typing.ForwardRef` to handle the `is_class` argument.
|
||||
|
||||
https://github.com/python/cpython/blob/aaaf5174241496afca7ce4d4584570190ff972fe/Lib/typing.py#L1773-L1875
|
||||
|
||||
DO NOT CHANGE THIS METHOD UNLESS ABSOLUTELY NECESSARY.
|
||||
======================================================
|
||||
|
||||
Return type hints for an object.
|
||||
|
||||
This is often the same as obj.__annotations__, but it handles
|
||||
forward references encoded as string literals, adds Optional[t] if a
|
||||
default value equal to None is set and recursively replaces all
|
||||
'Annotated[T, ...]' with 'T' (unless 'include_extras=True').
|
||||
|
||||
The argument may be a module, class, method, or function. The annotations
|
||||
are returned as a dictionary. For classes, annotations include also
|
||||
inherited members.
|
||||
|
||||
TypeError is raised if the argument is not of a type that can contain
|
||||
annotations, and an empty dictionary is returned if no annotations are
|
||||
present.
|
||||
|
||||
BEWARE -- the behavior of globalns and localns is counterintuitive
|
||||
(unless you are familiar with how eval() and exec() work). The
|
||||
search order is locals first, then globals.
|
||||
|
||||
- If no dict arguments are passed, an attempt is made to use the
|
||||
globals from obj (or the respective module's globals for classes),
|
||||
and these are also used as the locals. If the object does not appear
|
||||
to have globals, an empty dictionary is used. For classes, the search
|
||||
order is globals first then locals.
|
||||
|
||||
- If one dict argument is passed, it is used for both globals and
|
||||
locals.
|
||||
|
||||
- If two dict arguments are passed, they specify globals and
|
||||
locals, respectively.
|
||||
"""
|
||||
if getattr(obj, '__no_type_check__', None):
|
||||
return {}
|
||||
# Classes require a special treatment.
|
||||
if isinstance(obj, type):
|
||||
hints = {}
|
||||
for base in reversed(obj.__mro__):
|
||||
if globalns is None:
|
||||
base_globals = getattr(sys.modules.get(base.__module__, None), '__dict__', {})
|
||||
else:
|
||||
base_globals = globalns
|
||||
ann = base.__dict__.get('__annotations__', {})
|
||||
if isinstance(ann, types.GetSetDescriptorType):
|
||||
ann = {}
|
||||
base_locals = dict(vars(base)) if localns is None else localns
|
||||
if localns is None and globalns is None:
|
||||
# This is surprising, but required. Before Python 3.10,
|
||||
# get_type_hints only evaluated the globalns of
|
||||
# a class. To maintain backwards compatibility, we reverse
|
||||
# the globalns and localns order so that eval() looks into
|
||||
# *base_globals* first rather than *base_locals*.
|
||||
# This only affects ForwardRefs.
|
||||
base_globals, base_locals = base_locals, base_globals
|
||||
for name, value in ann.items():
|
||||
if value is None:
|
||||
value = type(None)
|
||||
if isinstance(value, str):
|
||||
value = _make_forward_ref(value, is_argument=False, is_class=True)
|
||||
|
||||
value = eval_type_backport(value, base_globals, base_locals)
|
||||
hints[name] = value
|
||||
if not include_extras and hasattr(typing, '_strip_annotations'):
|
||||
return {
|
||||
k: typing._strip_annotations(t) # type: ignore
|
||||
for k, t in hints.items()
|
||||
}
|
||||
else:
|
||||
return hints
|
||||
|
||||
if globalns is None:
|
||||
if isinstance(obj, types.ModuleType):
|
||||
globalns = obj.__dict__
|
||||
else:
|
||||
nsobj = obj
|
||||
# Find globalns for the unwrapped object.
|
||||
while hasattr(nsobj, '__wrapped__'):
|
||||
nsobj = nsobj.__wrapped__
|
||||
globalns = getattr(nsobj, '__globals__', {})
|
||||
if localns is None:
|
||||
localns = globalns
|
||||
elif localns is None:
|
||||
localns = globalns
|
||||
hints = getattr(obj, '__annotations__', None)
|
||||
if hints is None:
|
||||
# Return empty annotations for something that _could_ have them.
|
||||
if isinstance(obj, typing._allowed_types): # type: ignore
|
||||
return {}
|
||||
else:
|
||||
raise TypeError(f'{obj!r} is not a module, class, method, or function.')
|
||||
defaults = typing._get_defaults(obj) # type: ignore
|
||||
hints = dict(hints)
|
||||
for name, value in hints.items():
|
||||
if value is None:
|
||||
value = type(None)
|
||||
if isinstance(value, str):
|
||||
# class-level forward refs were handled above, this must be either
|
||||
# a module-level annotation or a function argument annotation
|
||||
|
||||
value = _make_forward_ref(
|
||||
value,
|
||||
is_argument=not isinstance(obj, types.ModuleType),
|
||||
is_class=False,
|
||||
)
|
||||
value = eval_type_backport(value, globalns, localns)
|
||||
if name in defaults and defaults[name] is None:
|
||||
value = typing.Optional[value]
|
||||
hints[name] = value
|
||||
return hints if include_extras else {k: typing._strip_annotations(t) for k, t in hints.items()} # type: ignore
|
431
venv/lib/python3.11/site-packages/pydantic/_internal/_utils.py
Normal file
431
venv/lib/python3.11/site-packages/pydantic/_internal/_utils.py
Normal file
@ -0,0 +1,431 @@
|
||||
"""Bucket of reusable internal utilities.
|
||||
|
||||
This should be reduced as much as possible with functions only used in one place, moved to that place.
|
||||
"""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import dataclasses
|
||||
import keyword
|
||||
import sys
|
||||
import typing
|
||||
import warnings
|
||||
import weakref
|
||||
from collections import OrderedDict, defaultdict, deque
|
||||
from collections.abc import Mapping
|
||||
from copy import deepcopy
|
||||
from functools import cached_property
|
||||
from inspect import Parameter
|
||||
from itertools import zip_longest
|
||||
from types import BuiltinFunctionType, CodeType, FunctionType, GeneratorType, LambdaType, ModuleType
|
||||
from typing import Any, Callable, Generic, TypeVar, overload
|
||||
|
||||
from typing_extensions import TypeAlias, TypeGuard, deprecated
|
||||
|
||||
from pydantic import PydanticDeprecatedSince211
|
||||
|
||||
from . import _repr, _typing_extra
|
||||
from ._import_utils import import_cached_base_model
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
MappingIntStrAny: TypeAlias = 'typing.Mapping[int, Any] | typing.Mapping[str, Any]'
|
||||
AbstractSetIntStr: TypeAlias = 'typing.AbstractSet[int] | typing.AbstractSet[str]'
|
||||
from ..main import BaseModel
|
||||
|
||||
|
||||
# these are types that are returned unchanged by deepcopy
|
||||
IMMUTABLE_NON_COLLECTIONS_TYPES: set[type[Any]] = {
|
||||
int,
|
||||
float,
|
||||
complex,
|
||||
str,
|
||||
bool,
|
||||
bytes,
|
||||
type,
|
||||
_typing_extra.NoneType,
|
||||
FunctionType,
|
||||
BuiltinFunctionType,
|
||||
LambdaType,
|
||||
weakref.ref,
|
||||
CodeType,
|
||||
# note: including ModuleType will differ from behaviour of deepcopy by not producing error.
|
||||
# It might be not a good idea in general, but considering that this function used only internally
|
||||
# against default values of fields, this will allow to actually have a field with module as default value
|
||||
ModuleType,
|
||||
NotImplemented.__class__,
|
||||
Ellipsis.__class__,
|
||||
}
|
||||
|
||||
# these are types that if empty, might be copied with simple copy() instead of deepcopy()
|
||||
BUILTIN_COLLECTIONS: set[type[Any]] = {
|
||||
list,
|
||||
set,
|
||||
tuple,
|
||||
frozenset,
|
||||
dict,
|
||||
OrderedDict,
|
||||
defaultdict,
|
||||
deque,
|
||||
}
|
||||
|
||||
|
||||
def can_be_positional(param: Parameter) -> bool:
|
||||
"""Return whether the parameter accepts a positional argument.
|
||||
|
||||
```python {test="skip" lint="skip"}
|
||||
def func(a, /, b, *, c):
|
||||
pass
|
||||
|
||||
params = inspect.signature(func).parameters
|
||||
can_be_positional(params['a'])
|
||||
#> True
|
||||
can_be_positional(params['b'])
|
||||
#> True
|
||||
can_be_positional(params['c'])
|
||||
#> False
|
||||
```
|
||||
"""
|
||||
return param.kind in (Parameter.POSITIONAL_ONLY, Parameter.POSITIONAL_OR_KEYWORD)
|
||||
|
||||
|
||||
def sequence_like(v: Any) -> bool:
|
||||
return isinstance(v, (list, tuple, set, frozenset, GeneratorType, deque))
|
||||
|
||||
|
||||
def lenient_isinstance(o: Any, class_or_tuple: type[Any] | tuple[type[Any], ...] | None) -> bool: # pragma: no cover
|
||||
try:
|
||||
return isinstance(o, class_or_tuple) # type: ignore[arg-type]
|
||||
except TypeError:
|
||||
return False
|
||||
|
||||
|
||||
def lenient_issubclass(cls: Any, class_or_tuple: Any) -> bool: # pragma: no cover
|
||||
try:
|
||||
return isinstance(cls, type) and issubclass(cls, class_or_tuple)
|
||||
except TypeError:
|
||||
if isinstance(cls, _typing_extra.WithArgsTypes):
|
||||
return False
|
||||
raise # pragma: no cover
|
||||
|
||||
|
||||
def is_model_class(cls: Any) -> TypeGuard[type[BaseModel]]:
|
||||
"""Returns true if cls is a _proper_ subclass of BaseModel, and provides proper type-checking,
|
||||
unlike raw calls to lenient_issubclass.
|
||||
"""
|
||||
BaseModel = import_cached_base_model()
|
||||
|
||||
return lenient_issubclass(cls, BaseModel) and cls is not BaseModel
|
||||
|
||||
|
||||
def is_valid_identifier(identifier: str) -> bool:
|
||||
"""Checks that a string is a valid identifier and not a Python keyword.
|
||||
:param identifier: The identifier to test.
|
||||
:return: True if the identifier is valid.
|
||||
"""
|
||||
return identifier.isidentifier() and not keyword.iskeyword(identifier)
|
||||
|
||||
|
||||
KeyType = TypeVar('KeyType')
|
||||
|
||||
|
||||
def deep_update(mapping: dict[KeyType, Any], *updating_mappings: dict[KeyType, Any]) -> dict[KeyType, Any]:
|
||||
updated_mapping = mapping.copy()
|
||||
for updating_mapping in updating_mappings:
|
||||
for k, v in updating_mapping.items():
|
||||
if k in updated_mapping and isinstance(updated_mapping[k], dict) and isinstance(v, dict):
|
||||
updated_mapping[k] = deep_update(updated_mapping[k], v)
|
||||
else:
|
||||
updated_mapping[k] = v
|
||||
return updated_mapping
|
||||
|
||||
|
||||
def update_not_none(mapping: dict[Any, Any], **update: Any) -> None:
|
||||
mapping.update({k: v for k, v in update.items() if v is not None})
|
||||
|
||||
|
||||
T = TypeVar('T')
|
||||
|
||||
|
||||
def unique_list(
|
||||
input_list: list[T] | tuple[T, ...],
|
||||
*,
|
||||
name_factory: typing.Callable[[T], str] = str,
|
||||
) -> list[T]:
|
||||
"""Make a list unique while maintaining order.
|
||||
We update the list if another one with the same name is set
|
||||
(e.g. model validator overridden in subclass).
|
||||
"""
|
||||
result: list[T] = []
|
||||
result_names: list[str] = []
|
||||
for v in input_list:
|
||||
v_name = name_factory(v)
|
||||
if v_name not in result_names:
|
||||
result_names.append(v_name)
|
||||
result.append(v)
|
||||
else:
|
||||
result[result_names.index(v_name)] = v
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class ValueItems(_repr.Representation):
|
||||
"""Class for more convenient calculation of excluded or included fields on values."""
|
||||
|
||||
__slots__ = ('_items', '_type')
|
||||
|
||||
def __init__(self, value: Any, items: AbstractSetIntStr | MappingIntStrAny) -> None:
|
||||
items = self._coerce_items(items)
|
||||
|
||||
if isinstance(value, (list, tuple)):
|
||||
items = self._normalize_indexes(items, len(value)) # type: ignore
|
||||
|
||||
self._items: MappingIntStrAny = items # type: ignore
|
||||
|
||||
def is_excluded(self, item: Any) -> bool:
|
||||
"""Check if item is fully excluded.
|
||||
|
||||
:param item: key or index of a value
|
||||
"""
|
||||
return self.is_true(self._items.get(item))
|
||||
|
||||
def is_included(self, item: Any) -> bool:
|
||||
"""Check if value is contained in self._items.
|
||||
|
||||
:param item: key or index of value
|
||||
"""
|
||||
return item in self._items
|
||||
|
||||
def for_element(self, e: int | str) -> AbstractSetIntStr | MappingIntStrAny | None:
|
||||
""":param e: key or index of element on value
|
||||
:return: raw values for element if self._items is dict and contain needed element
|
||||
"""
|
||||
item = self._items.get(e) # type: ignore
|
||||
return item if not self.is_true(item) else None
|
||||
|
||||
def _normalize_indexes(self, items: MappingIntStrAny, v_length: int) -> dict[int | str, Any]:
|
||||
""":param items: dict or set of indexes which will be normalized
|
||||
:param v_length: length of sequence indexes of which will be
|
||||
|
||||
>>> self._normalize_indexes({0: True, -2: True, -1: True}, 4)
|
||||
{0: True, 2: True, 3: True}
|
||||
>>> self._normalize_indexes({'__all__': True}, 4)
|
||||
{0: True, 1: True, 2: True, 3: True}
|
||||
"""
|
||||
normalized_items: dict[int | str, Any] = {}
|
||||
all_items = None
|
||||
for i, v in items.items():
|
||||
if not (isinstance(v, typing.Mapping) or isinstance(v, typing.AbstractSet) or self.is_true(v)):
|
||||
raise TypeError(f'Unexpected type of exclude value for index "{i}" {v.__class__}')
|
||||
if i == '__all__':
|
||||
all_items = self._coerce_value(v)
|
||||
continue
|
||||
if not isinstance(i, int):
|
||||
raise TypeError(
|
||||
'Excluding fields from a sequence of sub-models or dicts must be performed index-wise: '
|
||||
'expected integer keys or keyword "__all__"'
|
||||
)
|
||||
normalized_i = v_length + i if i < 0 else i
|
||||
normalized_items[normalized_i] = self.merge(v, normalized_items.get(normalized_i))
|
||||
|
||||
if not all_items:
|
||||
return normalized_items
|
||||
if self.is_true(all_items):
|
||||
for i in range(v_length):
|
||||
normalized_items.setdefault(i, ...)
|
||||
return normalized_items
|
||||
for i in range(v_length):
|
||||
normalized_item = normalized_items.setdefault(i, {})
|
||||
if not self.is_true(normalized_item):
|
||||
normalized_items[i] = self.merge(all_items, normalized_item)
|
||||
return normalized_items
|
||||
|
||||
@classmethod
|
||||
def merge(cls, base: Any, override: Any, intersect: bool = False) -> Any:
|
||||
"""Merge a `base` item with an `override` item.
|
||||
|
||||
Both `base` and `override` are converted to dictionaries if possible.
|
||||
Sets are converted to dictionaries with the sets entries as keys and
|
||||
Ellipsis as values.
|
||||
|
||||
Each key-value pair existing in `base` is merged with `override`,
|
||||
while the rest of the key-value pairs are updated recursively with this function.
|
||||
|
||||
Merging takes place based on the "union" of keys if `intersect` is
|
||||
set to `False` (default) and on the intersection of keys if
|
||||
`intersect` is set to `True`.
|
||||
"""
|
||||
override = cls._coerce_value(override)
|
||||
base = cls._coerce_value(base)
|
||||
if override is None:
|
||||
return base
|
||||
if cls.is_true(base) or base is None:
|
||||
return override
|
||||
if cls.is_true(override):
|
||||
return base if intersect else override
|
||||
|
||||
# intersection or union of keys while preserving ordering:
|
||||
if intersect:
|
||||
merge_keys = [k for k in base if k in override] + [k for k in override if k in base]
|
||||
else:
|
||||
merge_keys = list(base) + [k for k in override if k not in base]
|
||||
|
||||
merged: dict[int | str, Any] = {}
|
||||
for k in merge_keys:
|
||||
merged_item = cls.merge(base.get(k), override.get(k), intersect=intersect)
|
||||
if merged_item is not None:
|
||||
merged[k] = merged_item
|
||||
|
||||
return merged
|
||||
|
||||
@staticmethod
|
||||
def _coerce_items(items: AbstractSetIntStr | MappingIntStrAny) -> MappingIntStrAny:
|
||||
if isinstance(items, typing.Mapping):
|
||||
pass
|
||||
elif isinstance(items, typing.AbstractSet):
|
||||
items = dict.fromkeys(items, ...) # type: ignore
|
||||
else:
|
||||
class_name = getattr(items, '__class__', '???')
|
||||
raise TypeError(f'Unexpected type of exclude value {class_name}')
|
||||
return items # type: ignore
|
||||
|
||||
@classmethod
|
||||
def _coerce_value(cls, value: Any) -> Any:
|
||||
if value is None or cls.is_true(value):
|
||||
return value
|
||||
return cls._coerce_items(value)
|
||||
|
||||
@staticmethod
|
||||
def is_true(v: Any) -> bool:
|
||||
return v is True or v is ...
|
||||
|
||||
def __repr_args__(self) -> _repr.ReprArgs:
|
||||
return [(None, self._items)]
|
||||
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
|
||||
def LazyClassAttribute(name: str, get_value: Callable[[], T]) -> T: ...
|
||||
|
||||
else:
|
||||
|
||||
class LazyClassAttribute:
|
||||
"""A descriptor exposing an attribute only accessible on a class (hidden from instances).
|
||||
|
||||
The attribute is lazily computed and cached during the first access.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, get_value: Callable[[], Any]) -> None:
|
||||
self.name = name
|
||||
self.get_value = get_value
|
||||
|
||||
@cached_property
|
||||
def value(self) -> Any:
|
||||
return self.get_value()
|
||||
|
||||
def __get__(self, instance: Any, owner: type[Any]) -> None:
|
||||
if instance is None:
|
||||
return self.value
|
||||
raise AttributeError(f'{self.name!r} attribute of {owner.__name__!r} is class-only')
|
||||
|
||||
|
||||
Obj = TypeVar('Obj')
|
||||
|
||||
|
||||
def smart_deepcopy(obj: Obj) -> Obj:
|
||||
"""Return type as is for immutable built-in types
|
||||
Use obj.copy() for built-in empty collections
|
||||
Use copy.deepcopy() for non-empty collections and unknown objects.
|
||||
"""
|
||||
obj_type = obj.__class__
|
||||
if obj_type in IMMUTABLE_NON_COLLECTIONS_TYPES:
|
||||
return obj # fastest case: obj is immutable and not collection therefore will not be copied anyway
|
||||
try:
|
||||
if not obj and obj_type in BUILTIN_COLLECTIONS:
|
||||
# faster way for empty collections, no need to copy its members
|
||||
return obj if obj_type is tuple else obj.copy() # tuple doesn't have copy method # type: ignore
|
||||
except (TypeError, ValueError, RuntimeError):
|
||||
# do we really dare to catch ALL errors? Seems a bit risky
|
||||
pass
|
||||
|
||||
return deepcopy(obj) # slowest way when we actually might need a deepcopy
|
||||
|
||||
|
||||
_SENTINEL = object()
|
||||
|
||||
|
||||
def all_identical(left: typing.Iterable[Any], right: typing.Iterable[Any]) -> bool:
|
||||
"""Check that the items of `left` are the same objects as those in `right`.
|
||||
|
||||
>>> a, b = object(), object()
|
||||
>>> all_identical([a, b, a], [a, b, a])
|
||||
True
|
||||
>>> all_identical([a, b, [a]], [a, b, [a]]) # new list object, while "equal" is not "identical"
|
||||
False
|
||||
"""
|
||||
for left_item, right_item in zip_longest(left, right, fillvalue=_SENTINEL):
|
||||
if left_item is not right_item:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class SafeGetItemProxy:
|
||||
"""Wrapper redirecting `__getitem__` to `get` with a sentinel value as default
|
||||
|
||||
This makes is safe to use in `operator.itemgetter` when some keys may be missing
|
||||
"""
|
||||
|
||||
# Define __slots__manually for performances
|
||||
# @dataclasses.dataclass() only support slots=True in python>=3.10
|
||||
__slots__ = ('wrapped',)
|
||||
|
||||
wrapped: Mapping[str, Any]
|
||||
|
||||
def __getitem__(self, key: str, /) -> Any:
|
||||
return self.wrapped.get(key, _SENTINEL)
|
||||
|
||||
# required to pass the object to operator.itemgetter() instances due to a quirk of typeshed
|
||||
# https://github.com/python/mypy/issues/13713
|
||||
# https://github.com/python/typeshed/pull/8785
|
||||
# Since this is typing-only, hide it in a typing.TYPE_CHECKING block
|
||||
if typing.TYPE_CHECKING:
|
||||
|
||||
def __contains__(self, key: str, /) -> bool:
|
||||
return self.wrapped.__contains__(key)
|
||||
|
||||
|
||||
_ModelT = TypeVar('_ModelT', bound='BaseModel')
|
||||
_RT = TypeVar('_RT')
|
||||
|
||||
|
||||
class deprecated_instance_property(Generic[_ModelT, _RT]):
|
||||
"""A decorator exposing the decorated class method as a property, with a warning on instance access.
|
||||
|
||||
This decorator takes a class method defined on the `BaseModel` class and transforms it into
|
||||
an attribute. The attribute can be accessed on both the class and instances of the class. If accessed
|
||||
via an instance, a deprecation warning is emitted stating that instance access will be removed in V3.
|
||||
"""
|
||||
|
||||
def __init__(self, fget: Callable[[type[_ModelT]], _RT], /) -> None:
|
||||
# Note: fget should be a classmethod:
|
||||
self.fget = fget
|
||||
|
||||
@overload
|
||||
def __get__(self, instance: None, objtype: type[_ModelT]) -> _RT: ...
|
||||
@overload
|
||||
@deprecated(
|
||||
'Accessing this attribute on the instance is deprecated, and will be removed in Pydantic V3. '
|
||||
'Instead, you should access this attribute from the model class.',
|
||||
category=None,
|
||||
)
|
||||
def __get__(self, instance: _ModelT, objtype: type[_ModelT]) -> _RT: ...
|
||||
def __get__(self, instance: _ModelT | None, objtype: type[_ModelT]) -> _RT:
|
||||
if instance is not None:
|
||||
attr_name = self.fget.__name__ if sys.version_info >= (3, 10) else self.fget.__func__.__name__
|
||||
warnings.warn(
|
||||
f'Accessing the {attr_name!r} attribute on the instance is deprecated. '
|
||||
'Instead, you should access this attribute from the model class.',
|
||||
category=PydanticDeprecatedSince211,
|
||||
stacklevel=2,
|
||||
)
|
||||
return self.fget.__get__(instance, objtype)()
|
@ -0,0 +1,140 @@
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import functools
|
||||
import inspect
|
||||
from collections.abc import Awaitable
|
||||
from functools import partial
|
||||
from typing import Any, Callable
|
||||
|
||||
import pydantic_core
|
||||
|
||||
from ..config import ConfigDict
|
||||
from ..plugin._schema_validator import create_schema_validator
|
||||
from ._config import ConfigWrapper
|
||||
from ._generate_schema import GenerateSchema, ValidateCallSupportedTypes
|
||||
from ._namespace_utils import MappingNamespace, NsResolver, ns_for_function
|
||||
|
||||
|
||||
def extract_function_name(func: ValidateCallSupportedTypes) -> str:
|
||||
"""Extract the name of a `ValidateCallSupportedTypes` object."""
|
||||
return f'partial({func.func.__name__})' if isinstance(func, functools.partial) else func.__name__
|
||||
|
||||
|
||||
def extract_function_qualname(func: ValidateCallSupportedTypes) -> str:
|
||||
"""Extract the qualname of a `ValidateCallSupportedTypes` object."""
|
||||
return f'partial({func.func.__qualname__})' if isinstance(func, functools.partial) else func.__qualname__
|
||||
|
||||
|
||||
def update_wrapper_attributes(wrapped: ValidateCallSupportedTypes, wrapper: Callable[..., Any]):
|
||||
"""Update the `wrapper` function with the attributes of the `wrapped` function. Return the updated function."""
|
||||
if inspect.iscoroutinefunction(wrapped):
|
||||
|
||||
@functools.wraps(wrapped)
|
||||
async def wrapper_function(*args, **kwargs): # type: ignore
|
||||
return await wrapper(*args, **kwargs)
|
||||
else:
|
||||
|
||||
@functools.wraps(wrapped)
|
||||
def wrapper_function(*args, **kwargs):
|
||||
return wrapper(*args, **kwargs)
|
||||
|
||||
# We need to manually update this because `partial` object has no `__name__` and `__qualname__`.
|
||||
wrapper_function.__name__ = extract_function_name(wrapped)
|
||||
wrapper_function.__qualname__ = extract_function_qualname(wrapped)
|
||||
wrapper_function.raw_function = wrapped # type: ignore
|
||||
|
||||
return wrapper_function
|
||||
|
||||
|
||||
class ValidateCallWrapper:
|
||||
"""This is a wrapper around a function that validates the arguments passed to it, and optionally the return value."""
|
||||
|
||||
__slots__ = (
|
||||
'function',
|
||||
'validate_return',
|
||||
'schema_type',
|
||||
'module',
|
||||
'qualname',
|
||||
'ns_resolver',
|
||||
'config_wrapper',
|
||||
'__pydantic_complete__',
|
||||
'__pydantic_validator__',
|
||||
'__return_pydantic_validator__',
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
function: ValidateCallSupportedTypes,
|
||||
config: ConfigDict | None,
|
||||
validate_return: bool,
|
||||
parent_namespace: MappingNamespace | None,
|
||||
) -> None:
|
||||
self.function = function
|
||||
self.validate_return = validate_return
|
||||
if isinstance(function, partial):
|
||||
self.schema_type = function.func
|
||||
self.module = function.func.__module__
|
||||
else:
|
||||
self.schema_type = function
|
||||
self.module = function.__module__
|
||||
self.qualname = extract_function_qualname(function)
|
||||
|
||||
self.ns_resolver = NsResolver(
|
||||
namespaces_tuple=ns_for_function(self.schema_type, parent_namespace=parent_namespace)
|
||||
)
|
||||
self.config_wrapper = ConfigWrapper(config)
|
||||
if not self.config_wrapper.defer_build:
|
||||
self._create_validators()
|
||||
else:
|
||||
self.__pydantic_complete__ = False
|
||||
|
||||
def _create_validators(self) -> None:
|
||||
gen_schema = GenerateSchema(self.config_wrapper, self.ns_resolver)
|
||||
schema = gen_schema.clean_schema(gen_schema.generate_schema(self.function))
|
||||
core_config = self.config_wrapper.core_config(title=self.qualname)
|
||||
|
||||
self.__pydantic_validator__ = create_schema_validator(
|
||||
schema,
|
||||
self.schema_type,
|
||||
self.module,
|
||||
self.qualname,
|
||||
'validate_call',
|
||||
core_config,
|
||||
self.config_wrapper.plugin_settings,
|
||||
)
|
||||
if self.validate_return:
|
||||
signature = inspect.signature(self.function)
|
||||
return_type = signature.return_annotation if signature.return_annotation is not signature.empty else Any
|
||||
gen_schema = GenerateSchema(self.config_wrapper, self.ns_resolver)
|
||||
schema = gen_schema.clean_schema(gen_schema.generate_schema(return_type))
|
||||
validator = create_schema_validator(
|
||||
schema,
|
||||
self.schema_type,
|
||||
self.module,
|
||||
self.qualname,
|
||||
'validate_call',
|
||||
core_config,
|
||||
self.config_wrapper.plugin_settings,
|
||||
)
|
||||
if inspect.iscoroutinefunction(self.function):
|
||||
|
||||
async def return_val_wrapper(aw: Awaitable[Any]) -> None:
|
||||
return validator.validate_python(await aw)
|
||||
|
||||
self.__return_pydantic_validator__ = return_val_wrapper
|
||||
else:
|
||||
self.__return_pydantic_validator__ = validator.validate_python
|
||||
else:
|
||||
self.__return_pydantic_validator__ = None
|
||||
|
||||
self.__pydantic_complete__ = True
|
||||
|
||||
def __call__(self, *args: Any, **kwargs: Any) -> Any:
|
||||
if not self.__pydantic_complete__:
|
||||
self._create_validators()
|
||||
|
||||
res = self.__pydantic_validator__.validate_python(pydantic_core.ArgsKwargs(args, kwargs))
|
||||
if self.__return_pydantic_validator__:
|
||||
return self.__return_pydantic_validator__(res)
|
||||
else:
|
||||
return res
|
@ -0,0 +1,532 @@
|
||||
"""Validator functions for standard library types.
|
||||
|
||||
Import of this module is deferred since it contains imports of many standard library modules.
|
||||
"""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
import collections.abc
|
||||
import math
|
||||
import re
|
||||
import typing
|
||||
from decimal import Decimal
|
||||
from fractions import Fraction
|
||||
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
|
||||
from typing import Any, Callable, Union, cast, get_origin
|
||||
from zoneinfo import ZoneInfo, ZoneInfoNotFoundError
|
||||
|
||||
import typing_extensions
|
||||
from pydantic_core import PydanticCustomError, core_schema
|
||||
from pydantic_core._pydantic_core import PydanticKnownError
|
||||
from typing_inspection import typing_objects
|
||||
|
||||
from pydantic._internal._import_utils import import_cached_field_info
|
||||
from pydantic.errors import PydanticSchemaGenerationError
|
||||
|
||||
|
||||
def sequence_validator(
|
||||
input_value: typing.Sequence[Any],
|
||||
/,
|
||||
validator: core_schema.ValidatorFunctionWrapHandler,
|
||||
) -> typing.Sequence[Any]:
|
||||
"""Validator for `Sequence` types, isinstance(v, Sequence) has already been called."""
|
||||
value_type = type(input_value)
|
||||
|
||||
# We don't accept any plain string as a sequence
|
||||
# Relevant issue: https://github.com/pydantic/pydantic/issues/5595
|
||||
if issubclass(value_type, (str, bytes)):
|
||||
raise PydanticCustomError(
|
||||
'sequence_str',
|
||||
"'{type_name}' instances are not allowed as a Sequence value",
|
||||
{'type_name': value_type.__name__},
|
||||
)
|
||||
|
||||
# TODO: refactor sequence validation to validate with either a list or a tuple
|
||||
# schema, depending on the type of the value.
|
||||
# Additionally, we should be able to remove one of either this validator or the
|
||||
# SequenceValidator in _std_types_schema.py (preferably this one, while porting over some logic).
|
||||
# Effectively, a refactor for sequence validation is needed.
|
||||
if value_type is tuple:
|
||||
input_value = list(input_value)
|
||||
|
||||
v_list = validator(input_value)
|
||||
|
||||
# the rest of the logic is just re-creating the original type from `v_list`
|
||||
if value_type is list:
|
||||
return v_list
|
||||
elif issubclass(value_type, range):
|
||||
# return the list as we probably can't re-create the range
|
||||
return v_list
|
||||
elif value_type is tuple:
|
||||
return tuple(v_list)
|
||||
else:
|
||||
# best guess at how to re-create the original type, more custom construction logic might be required
|
||||
return value_type(v_list) # type: ignore[call-arg]
|
||||
|
||||
|
||||
def import_string(value: Any) -> Any:
|
||||
if isinstance(value, str):
|
||||
try:
|
||||
return _import_string_logic(value)
|
||||
except ImportError as e:
|
||||
raise PydanticCustomError('import_error', 'Invalid python path: {error}', {'error': str(e)}) from e
|
||||
else:
|
||||
# otherwise we just return the value and let the next validator do the rest of the work
|
||||
return value
|
||||
|
||||
|
||||
def _import_string_logic(dotted_path: str) -> Any:
|
||||
"""Inspired by uvicorn — dotted paths should include a colon before the final item if that item is not a module.
|
||||
(This is necessary to distinguish between a submodule and an attribute when there is a conflict.).
|
||||
|
||||
If the dotted path does not include a colon and the final item is not a valid module, importing as an attribute
|
||||
rather than a submodule will be attempted automatically.
|
||||
|
||||
So, for example, the following values of `dotted_path` result in the following returned values:
|
||||
* 'collections': <module 'collections'>
|
||||
* 'collections.abc': <module 'collections.abc'>
|
||||
* 'collections.abc:Mapping': <class 'collections.abc.Mapping'>
|
||||
* `collections.abc.Mapping`: <class 'collections.abc.Mapping'> (though this is a bit slower than the previous line)
|
||||
|
||||
An error will be raised under any of the following scenarios:
|
||||
* `dotted_path` contains more than one colon (e.g., 'collections:abc:Mapping')
|
||||
* the substring of `dotted_path` before the colon is not a valid module in the environment (e.g., '123:Mapping')
|
||||
* the substring of `dotted_path` after the colon is not an attribute of the module (e.g., 'collections:abc123')
|
||||
"""
|
||||
from importlib import import_module
|
||||
|
||||
components = dotted_path.strip().split(':')
|
||||
if len(components) > 2:
|
||||
raise ImportError(f"Import strings should have at most one ':'; received {dotted_path!r}")
|
||||
|
||||
module_path = components[0]
|
||||
if not module_path:
|
||||
raise ImportError(f'Import strings should have a nonempty module name; received {dotted_path!r}')
|
||||
|
||||
try:
|
||||
module = import_module(module_path)
|
||||
except ModuleNotFoundError as e:
|
||||
if '.' in module_path:
|
||||
# Check if it would be valid if the final item was separated from its module with a `:`
|
||||
maybe_module_path, maybe_attribute = dotted_path.strip().rsplit('.', 1)
|
||||
try:
|
||||
return _import_string_logic(f'{maybe_module_path}:{maybe_attribute}')
|
||||
except ImportError:
|
||||
pass
|
||||
raise ImportError(f'No module named {module_path!r}') from e
|
||||
raise e
|
||||
|
||||
if len(components) > 1:
|
||||
attribute = components[1]
|
||||
try:
|
||||
return getattr(module, attribute)
|
||||
except AttributeError as e:
|
||||
raise ImportError(f'cannot import name {attribute!r} from {module_path!r}') from e
|
||||
else:
|
||||
return module
|
||||
|
||||
|
||||
def pattern_either_validator(input_value: Any, /) -> typing.Pattern[Any]:
|
||||
if isinstance(input_value, typing.Pattern):
|
||||
return input_value
|
||||
elif isinstance(input_value, (str, bytes)):
|
||||
# todo strict mode
|
||||
return compile_pattern(input_value) # type: ignore
|
||||
else:
|
||||
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
|
||||
|
||||
|
||||
def pattern_str_validator(input_value: Any, /) -> typing.Pattern[str]:
|
||||
if isinstance(input_value, typing.Pattern):
|
||||
if isinstance(input_value.pattern, str):
|
||||
return input_value
|
||||
else:
|
||||
raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern')
|
||||
elif isinstance(input_value, str):
|
||||
return compile_pattern(input_value)
|
||||
elif isinstance(input_value, bytes):
|
||||
raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern')
|
||||
else:
|
||||
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
|
||||
|
||||
|
||||
def pattern_bytes_validator(input_value: Any, /) -> typing.Pattern[bytes]:
|
||||
if isinstance(input_value, typing.Pattern):
|
||||
if isinstance(input_value.pattern, bytes):
|
||||
return input_value
|
||||
else:
|
||||
raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern')
|
||||
elif isinstance(input_value, bytes):
|
||||
return compile_pattern(input_value)
|
||||
elif isinstance(input_value, str):
|
||||
raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern')
|
||||
else:
|
||||
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
|
||||
|
||||
|
||||
PatternType = typing.TypeVar('PatternType', str, bytes)
|
||||
|
||||
|
||||
def compile_pattern(pattern: PatternType) -> typing.Pattern[PatternType]:
|
||||
try:
|
||||
return re.compile(pattern)
|
||||
except re.error:
|
||||
raise PydanticCustomError('pattern_regex', 'Input should be a valid regular expression')
|
||||
|
||||
|
||||
def ip_v4_address_validator(input_value: Any, /) -> IPv4Address:
|
||||
if isinstance(input_value, IPv4Address):
|
||||
return input_value
|
||||
|
||||
try:
|
||||
return IPv4Address(input_value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('ip_v4_address', 'Input is not a valid IPv4 address')
|
||||
|
||||
|
||||
def ip_v6_address_validator(input_value: Any, /) -> IPv6Address:
|
||||
if isinstance(input_value, IPv6Address):
|
||||
return input_value
|
||||
|
||||
try:
|
||||
return IPv6Address(input_value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('ip_v6_address', 'Input is not a valid IPv6 address')
|
||||
|
||||
|
||||
def ip_v4_network_validator(input_value: Any, /) -> IPv4Network:
|
||||
"""Assume IPv4Network initialised with a default `strict` argument.
|
||||
|
||||
See more:
|
||||
https://docs.python.org/library/ipaddress.html#ipaddress.IPv4Network
|
||||
"""
|
||||
if isinstance(input_value, IPv4Network):
|
||||
return input_value
|
||||
|
||||
try:
|
||||
return IPv4Network(input_value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('ip_v4_network', 'Input is not a valid IPv4 network')
|
||||
|
||||
|
||||
def ip_v6_network_validator(input_value: Any, /) -> IPv6Network:
|
||||
"""Assume IPv6Network initialised with a default `strict` argument.
|
||||
|
||||
See more:
|
||||
https://docs.python.org/library/ipaddress.html#ipaddress.IPv6Network
|
||||
"""
|
||||
if isinstance(input_value, IPv6Network):
|
||||
return input_value
|
||||
|
||||
try:
|
||||
return IPv6Network(input_value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('ip_v6_network', 'Input is not a valid IPv6 network')
|
||||
|
||||
|
||||
def ip_v4_interface_validator(input_value: Any, /) -> IPv4Interface:
|
||||
if isinstance(input_value, IPv4Interface):
|
||||
return input_value
|
||||
|
||||
try:
|
||||
return IPv4Interface(input_value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('ip_v4_interface', 'Input is not a valid IPv4 interface')
|
||||
|
||||
|
||||
def ip_v6_interface_validator(input_value: Any, /) -> IPv6Interface:
|
||||
if isinstance(input_value, IPv6Interface):
|
||||
return input_value
|
||||
|
||||
try:
|
||||
return IPv6Interface(input_value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('ip_v6_interface', 'Input is not a valid IPv6 interface')
|
||||
|
||||
|
||||
def fraction_validator(input_value: Any, /) -> Fraction:
|
||||
if isinstance(input_value, Fraction):
|
||||
return input_value
|
||||
|
||||
try:
|
||||
return Fraction(input_value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('fraction_parsing', 'Input is not a valid fraction')
|
||||
|
||||
|
||||
def forbid_inf_nan_check(x: Any) -> Any:
|
||||
if not math.isfinite(x):
|
||||
raise PydanticKnownError('finite_number')
|
||||
return x
|
||||
|
||||
|
||||
def _safe_repr(v: Any) -> int | float | str:
|
||||
"""The context argument for `PydanticKnownError` requires a number or str type, so we do a simple repr() coercion for types like timedelta.
|
||||
|
||||
See tests/test_types.py::test_annotated_metadata_any_order for some context.
|
||||
"""
|
||||
if isinstance(v, (int, float, str)):
|
||||
return v
|
||||
return repr(v)
|
||||
|
||||
|
||||
def greater_than_validator(x: Any, gt: Any) -> Any:
|
||||
try:
|
||||
if not (x > gt):
|
||||
raise PydanticKnownError('greater_than', {'gt': _safe_repr(gt)})
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'gt' to supplied value {x}")
|
||||
|
||||
|
||||
def greater_than_or_equal_validator(x: Any, ge: Any) -> Any:
|
||||
try:
|
||||
if not (x >= ge):
|
||||
raise PydanticKnownError('greater_than_equal', {'ge': _safe_repr(ge)})
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'ge' to supplied value {x}")
|
||||
|
||||
|
||||
def less_than_validator(x: Any, lt: Any) -> Any:
|
||||
try:
|
||||
if not (x < lt):
|
||||
raise PydanticKnownError('less_than', {'lt': _safe_repr(lt)})
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'lt' to supplied value {x}")
|
||||
|
||||
|
||||
def less_than_or_equal_validator(x: Any, le: Any) -> Any:
|
||||
try:
|
||||
if not (x <= le):
|
||||
raise PydanticKnownError('less_than_equal', {'le': _safe_repr(le)})
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'le' to supplied value {x}")
|
||||
|
||||
|
||||
def multiple_of_validator(x: Any, multiple_of: Any) -> Any:
|
||||
try:
|
||||
if x % multiple_of:
|
||||
raise PydanticKnownError('multiple_of', {'multiple_of': _safe_repr(multiple_of)})
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'multiple_of' to supplied value {x}")
|
||||
|
||||
|
||||
def min_length_validator(x: Any, min_length: Any) -> Any:
|
||||
try:
|
||||
if not (len(x) >= min_length):
|
||||
raise PydanticKnownError(
|
||||
'too_short', {'field_type': 'Value', 'min_length': min_length, 'actual_length': len(x)}
|
||||
)
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'min_length' to supplied value {x}")
|
||||
|
||||
|
||||
def max_length_validator(x: Any, max_length: Any) -> Any:
|
||||
try:
|
||||
if len(x) > max_length:
|
||||
raise PydanticKnownError(
|
||||
'too_long',
|
||||
{'field_type': 'Value', 'max_length': max_length, 'actual_length': len(x)},
|
||||
)
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'max_length' to supplied value {x}")
|
||||
|
||||
|
||||
def _extract_decimal_digits_info(decimal: Decimal) -> tuple[int, int]:
|
||||
"""Compute the total number of digits and decimal places for a given [`Decimal`][decimal.Decimal] instance.
|
||||
|
||||
This function handles both normalized and non-normalized Decimal instances.
|
||||
Example: Decimal('1.230') -> 4 digits, 3 decimal places
|
||||
|
||||
Args:
|
||||
decimal (Decimal): The decimal number to analyze.
|
||||
|
||||
Returns:
|
||||
tuple[int, int]: A tuple containing the number of decimal places and total digits.
|
||||
|
||||
Though this could be divided into two separate functions, the logic is easier to follow if we couple the computation
|
||||
of the number of decimals and digits together.
|
||||
"""
|
||||
try:
|
||||
decimal_tuple = decimal.as_tuple()
|
||||
|
||||
assert isinstance(decimal_tuple.exponent, int)
|
||||
|
||||
exponent = decimal_tuple.exponent
|
||||
num_digits = len(decimal_tuple.digits)
|
||||
|
||||
if exponent >= 0:
|
||||
# A positive exponent adds that many trailing zeros
|
||||
# Ex: digit_tuple=(1, 2, 3), exponent=2 -> 12300 -> 0 decimal places, 5 digits
|
||||
num_digits += exponent
|
||||
decimal_places = 0
|
||||
else:
|
||||
# If the absolute value of the negative exponent is larger than the
|
||||
# number of digits, then it's the same as the number of digits,
|
||||
# because it'll consume all the digits in digit_tuple and then
|
||||
# add abs(exponent) - len(digit_tuple) leading zeros after the decimal point.
|
||||
# Ex: digit_tuple=(1, 2, 3), exponent=-2 -> 1.23 -> 2 decimal places, 3 digits
|
||||
# Ex: digit_tuple=(1, 2, 3), exponent=-4 -> 0.0123 -> 4 decimal places, 4 digits
|
||||
decimal_places = abs(exponent)
|
||||
num_digits = max(num_digits, decimal_places)
|
||||
|
||||
return decimal_places, num_digits
|
||||
except (AssertionError, AttributeError):
|
||||
raise TypeError(f'Unable to extract decimal digits info from supplied value {decimal}')
|
||||
|
||||
|
||||
def max_digits_validator(x: Any, max_digits: Any) -> Any:
|
||||
try:
|
||||
_, num_digits = _extract_decimal_digits_info(x)
|
||||
_, normalized_num_digits = _extract_decimal_digits_info(x.normalize())
|
||||
if (num_digits > max_digits) and (normalized_num_digits > max_digits):
|
||||
raise PydanticKnownError(
|
||||
'decimal_max_digits',
|
||||
{'max_digits': max_digits},
|
||||
)
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'max_digits' to supplied value {x}")
|
||||
|
||||
|
||||
def decimal_places_validator(x: Any, decimal_places: Any) -> Any:
|
||||
try:
|
||||
decimal_places_, _ = _extract_decimal_digits_info(x)
|
||||
if decimal_places_ > decimal_places:
|
||||
normalized_decimal_places, _ = _extract_decimal_digits_info(x.normalize())
|
||||
if normalized_decimal_places > decimal_places:
|
||||
raise PydanticKnownError(
|
||||
'decimal_max_places',
|
||||
{'decimal_places': decimal_places},
|
||||
)
|
||||
return x
|
||||
except TypeError:
|
||||
raise TypeError(f"Unable to apply constraint 'decimal_places' to supplied value {x}")
|
||||
|
||||
|
||||
def deque_validator(input_value: Any, handler: core_schema.ValidatorFunctionWrapHandler) -> collections.deque[Any]:
|
||||
return collections.deque(handler(input_value), maxlen=getattr(input_value, 'maxlen', None))
|
||||
|
||||
|
||||
def defaultdict_validator(
|
||||
input_value: Any, handler: core_schema.ValidatorFunctionWrapHandler, default_default_factory: Callable[[], Any]
|
||||
) -> collections.defaultdict[Any, Any]:
|
||||
if isinstance(input_value, collections.defaultdict):
|
||||
default_factory = input_value.default_factory
|
||||
return collections.defaultdict(default_factory, handler(input_value))
|
||||
else:
|
||||
return collections.defaultdict(default_default_factory, handler(input_value))
|
||||
|
||||
|
||||
def get_defaultdict_default_default_factory(values_source_type: Any) -> Callable[[], Any]:
|
||||
FieldInfo = import_cached_field_info()
|
||||
|
||||
values_type_origin = get_origin(values_source_type)
|
||||
|
||||
def infer_default() -> Callable[[], Any]:
|
||||
allowed_default_types: dict[Any, Any] = {
|
||||
tuple: tuple,
|
||||
collections.abc.Sequence: tuple,
|
||||
collections.abc.MutableSequence: list,
|
||||
list: list,
|
||||
typing.Sequence: list,
|
||||
set: set,
|
||||
typing.MutableSet: set,
|
||||
collections.abc.MutableSet: set,
|
||||
collections.abc.Set: frozenset,
|
||||
typing.MutableMapping: dict,
|
||||
typing.Mapping: dict,
|
||||
collections.abc.Mapping: dict,
|
||||
collections.abc.MutableMapping: dict,
|
||||
float: float,
|
||||
int: int,
|
||||
str: str,
|
||||
bool: bool,
|
||||
}
|
||||
values_type = values_type_origin or values_source_type
|
||||
instructions = 'set using `DefaultDict[..., Annotated[..., Field(default_factory=...)]]`'
|
||||
if typing_objects.is_typevar(values_type):
|
||||
|
||||
def type_var_default_factory() -> None:
|
||||
raise RuntimeError(
|
||||
'Generic defaultdict cannot be used without a concrete value type or an'
|
||||
' explicit default factory, ' + instructions
|
||||
)
|
||||
|
||||
return type_var_default_factory
|
||||
elif values_type not in allowed_default_types:
|
||||
# a somewhat subjective set of types that have reasonable default values
|
||||
allowed_msg = ', '.join([t.__name__ for t in set(allowed_default_types.values())])
|
||||
raise PydanticSchemaGenerationError(
|
||||
f'Unable to infer a default factory for keys of type {values_source_type}.'
|
||||
f' Only {allowed_msg} are supported, other types require an explicit default factory'
|
||||
' ' + instructions
|
||||
)
|
||||
return allowed_default_types[values_type]
|
||||
|
||||
# Assume Annotated[..., Field(...)]
|
||||
if typing_objects.is_annotated(values_type_origin):
|
||||
field_info = next((v for v in typing_extensions.get_args(values_source_type) if isinstance(v, FieldInfo)), None)
|
||||
else:
|
||||
field_info = None
|
||||
if field_info and field_info.default_factory:
|
||||
# Assume the default factory does not take any argument:
|
||||
default_default_factory = cast(Callable[[], Any], field_info.default_factory)
|
||||
else:
|
||||
default_default_factory = infer_default()
|
||||
return default_default_factory
|
||||
|
||||
|
||||
def validate_str_is_valid_iana_tz(value: Any, /) -> ZoneInfo:
|
||||
if isinstance(value, ZoneInfo):
|
||||
return value
|
||||
try:
|
||||
return ZoneInfo(value)
|
||||
except (ZoneInfoNotFoundError, ValueError, TypeError):
|
||||
raise PydanticCustomError('zoneinfo_str', 'invalid timezone: {value}', {'value': value})
|
||||
|
||||
|
||||
NUMERIC_VALIDATOR_LOOKUP: dict[str, Callable] = {
|
||||
'gt': greater_than_validator,
|
||||
'ge': greater_than_or_equal_validator,
|
||||
'lt': less_than_validator,
|
||||
'le': less_than_or_equal_validator,
|
||||
'multiple_of': multiple_of_validator,
|
||||
'min_length': min_length_validator,
|
||||
'max_length': max_length_validator,
|
||||
'max_digits': max_digits_validator,
|
||||
'decimal_places': decimal_places_validator,
|
||||
}
|
||||
|
||||
IpType = Union[IPv4Address, IPv6Address, IPv4Network, IPv6Network, IPv4Interface, IPv6Interface]
|
||||
|
||||
IP_VALIDATOR_LOOKUP: dict[type[IpType], Callable] = {
|
||||
IPv4Address: ip_v4_address_validator,
|
||||
IPv6Address: ip_v6_address_validator,
|
||||
IPv4Network: ip_v4_network_validator,
|
||||
IPv6Network: ip_v6_network_validator,
|
||||
IPv4Interface: ip_v4_interface_validator,
|
||||
IPv6Interface: ip_v6_interface_validator,
|
||||
}
|
||||
|
||||
MAPPING_ORIGIN_MAP: dict[Any, Any] = {
|
||||
typing.DefaultDict: collections.defaultdict, # noqa: UP006
|
||||
collections.defaultdict: collections.defaultdict,
|
||||
typing.OrderedDict: collections.OrderedDict, # noqa: UP006
|
||||
collections.OrderedDict: collections.OrderedDict,
|
||||
typing_extensions.OrderedDict: collections.OrderedDict,
|
||||
typing.Counter: collections.Counter,
|
||||
collections.Counter: collections.Counter,
|
||||
# this doesn't handle subclasses of these
|
||||
typing.Mapping: dict,
|
||||
typing.MutableMapping: dict,
|
||||
# parametrized typing.{Mutable}Mapping creates one of these
|
||||
collections.abc.Mapping: dict,
|
||||
collections.abc.MutableMapping: dict,
|
||||
}
|
308
venv/lib/python3.11/site-packages/pydantic/_migration.py
Normal file
308
venv/lib/python3.11/site-packages/pydantic/_migration.py
Normal file
@ -0,0 +1,308 @@
|
||||
import sys
|
||||
from typing import Any, Callable
|
||||
|
||||
from .version import version_short
|
||||
|
||||
MOVED_IN_V2 = {
|
||||
'pydantic.utils:version_info': 'pydantic.version:version_info',
|
||||
'pydantic.error_wrappers:ValidationError': 'pydantic:ValidationError',
|
||||
'pydantic.utils:to_camel': 'pydantic.alias_generators:to_pascal',
|
||||
'pydantic.utils:to_lower_camel': 'pydantic.alias_generators:to_camel',
|
||||
'pydantic:PyObject': 'pydantic.types:ImportString',
|
||||
'pydantic.types:PyObject': 'pydantic.types:ImportString',
|
||||
'pydantic.generics:GenericModel': 'pydantic.BaseModel',
|
||||
}
|
||||
|
||||
DEPRECATED_MOVED_IN_V2 = {
|
||||
'pydantic.tools:schema_of': 'pydantic.deprecated.tools:schema_of',
|
||||
'pydantic.tools:parse_obj_as': 'pydantic.deprecated.tools:parse_obj_as',
|
||||
'pydantic.tools:schema_json_of': 'pydantic.deprecated.tools:schema_json_of',
|
||||
'pydantic.json:pydantic_encoder': 'pydantic.deprecated.json:pydantic_encoder',
|
||||
'pydantic:validate_arguments': 'pydantic.deprecated.decorator:validate_arguments',
|
||||
'pydantic.json:custom_pydantic_encoder': 'pydantic.deprecated.json:custom_pydantic_encoder',
|
||||
'pydantic.json:timedelta_isoformat': 'pydantic.deprecated.json:timedelta_isoformat',
|
||||
'pydantic.decorator:validate_arguments': 'pydantic.deprecated.decorator:validate_arguments',
|
||||
'pydantic.class_validators:validator': 'pydantic.deprecated.class_validators:validator',
|
||||
'pydantic.class_validators:root_validator': 'pydantic.deprecated.class_validators:root_validator',
|
||||
'pydantic.config:BaseConfig': 'pydantic.deprecated.config:BaseConfig',
|
||||
'pydantic.config:Extra': 'pydantic.deprecated.config:Extra',
|
||||
}
|
||||
|
||||
REDIRECT_TO_V1 = {
|
||||
f'pydantic.utils:{obj}': f'pydantic.v1.utils:{obj}'
|
||||
for obj in (
|
||||
'deep_update',
|
||||
'GetterDict',
|
||||
'lenient_issubclass',
|
||||
'lenient_isinstance',
|
||||
'is_valid_field',
|
||||
'update_not_none',
|
||||
'import_string',
|
||||
'Representation',
|
||||
'ROOT_KEY',
|
||||
'smart_deepcopy',
|
||||
'sequence_like',
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
REMOVED_IN_V2 = {
|
||||
'pydantic:ConstrainedBytes',
|
||||
'pydantic:ConstrainedDate',
|
||||
'pydantic:ConstrainedDecimal',
|
||||
'pydantic:ConstrainedFloat',
|
||||
'pydantic:ConstrainedFrozenSet',
|
||||
'pydantic:ConstrainedInt',
|
||||
'pydantic:ConstrainedList',
|
||||
'pydantic:ConstrainedSet',
|
||||
'pydantic:ConstrainedStr',
|
||||
'pydantic:JsonWrapper',
|
||||
'pydantic:NoneBytes',
|
||||
'pydantic:NoneStr',
|
||||
'pydantic:NoneStrBytes',
|
||||
'pydantic:Protocol',
|
||||
'pydantic:Required',
|
||||
'pydantic:StrBytes',
|
||||
'pydantic:compiled',
|
||||
'pydantic.config:get_config',
|
||||
'pydantic.config:inherit_config',
|
||||
'pydantic.config:prepare_config',
|
||||
'pydantic:create_model_from_namedtuple',
|
||||
'pydantic:create_model_from_typeddict',
|
||||
'pydantic.dataclasses:create_pydantic_model_from_dataclass',
|
||||
'pydantic.dataclasses:make_dataclass_validator',
|
||||
'pydantic.dataclasses:set_validation',
|
||||
'pydantic.datetime_parse:parse_date',
|
||||
'pydantic.datetime_parse:parse_time',
|
||||
'pydantic.datetime_parse:parse_datetime',
|
||||
'pydantic.datetime_parse:parse_duration',
|
||||
'pydantic.error_wrappers:ErrorWrapper',
|
||||
'pydantic.errors:AnyStrMaxLengthError',
|
||||
'pydantic.errors:AnyStrMinLengthError',
|
||||
'pydantic.errors:ArbitraryTypeError',
|
||||
'pydantic.errors:BoolError',
|
||||
'pydantic.errors:BytesError',
|
||||
'pydantic.errors:CallableError',
|
||||
'pydantic.errors:ClassError',
|
||||
'pydantic.errors:ColorError',
|
||||
'pydantic.errors:ConfigError',
|
||||
'pydantic.errors:DataclassTypeError',
|
||||
'pydantic.errors:DateError',
|
||||
'pydantic.errors:DateNotInTheFutureError',
|
||||
'pydantic.errors:DateNotInThePastError',
|
||||
'pydantic.errors:DateTimeError',
|
||||
'pydantic.errors:DecimalError',
|
||||
'pydantic.errors:DecimalIsNotFiniteError',
|
||||
'pydantic.errors:DecimalMaxDigitsError',
|
||||
'pydantic.errors:DecimalMaxPlacesError',
|
||||
'pydantic.errors:DecimalWholeDigitsError',
|
||||
'pydantic.errors:DictError',
|
||||
'pydantic.errors:DurationError',
|
||||
'pydantic.errors:EmailError',
|
||||
'pydantic.errors:EnumError',
|
||||
'pydantic.errors:EnumMemberError',
|
||||
'pydantic.errors:ExtraError',
|
||||
'pydantic.errors:FloatError',
|
||||
'pydantic.errors:FrozenSetError',
|
||||
'pydantic.errors:FrozenSetMaxLengthError',
|
||||
'pydantic.errors:FrozenSetMinLengthError',
|
||||
'pydantic.errors:HashableError',
|
||||
'pydantic.errors:IPv4AddressError',
|
||||
'pydantic.errors:IPv4InterfaceError',
|
||||
'pydantic.errors:IPv4NetworkError',
|
||||
'pydantic.errors:IPv6AddressError',
|
||||
'pydantic.errors:IPv6InterfaceError',
|
||||
'pydantic.errors:IPv6NetworkError',
|
||||
'pydantic.errors:IPvAnyAddressError',
|
||||
'pydantic.errors:IPvAnyInterfaceError',
|
||||
'pydantic.errors:IPvAnyNetworkError',
|
||||
'pydantic.errors:IntEnumError',
|
||||
'pydantic.errors:IntegerError',
|
||||
'pydantic.errors:InvalidByteSize',
|
||||
'pydantic.errors:InvalidByteSizeUnit',
|
||||
'pydantic.errors:InvalidDiscriminator',
|
||||
'pydantic.errors:InvalidLengthForBrand',
|
||||
'pydantic.errors:JsonError',
|
||||
'pydantic.errors:JsonTypeError',
|
||||
'pydantic.errors:ListError',
|
||||
'pydantic.errors:ListMaxLengthError',
|
||||
'pydantic.errors:ListMinLengthError',
|
||||
'pydantic.errors:ListUniqueItemsError',
|
||||
'pydantic.errors:LuhnValidationError',
|
||||
'pydantic.errors:MissingDiscriminator',
|
||||
'pydantic.errors:MissingError',
|
||||
'pydantic.errors:NoneIsAllowedError',
|
||||
'pydantic.errors:NoneIsNotAllowedError',
|
||||
'pydantic.errors:NotDigitError',
|
||||
'pydantic.errors:NotNoneError',
|
||||
'pydantic.errors:NumberNotGeError',
|
||||
'pydantic.errors:NumberNotGtError',
|
||||
'pydantic.errors:NumberNotLeError',
|
||||
'pydantic.errors:NumberNotLtError',
|
||||
'pydantic.errors:NumberNotMultipleError',
|
||||
'pydantic.errors:PathError',
|
||||
'pydantic.errors:PathNotADirectoryError',
|
||||
'pydantic.errors:PathNotAFileError',
|
||||
'pydantic.errors:PathNotExistsError',
|
||||
'pydantic.errors:PatternError',
|
||||
'pydantic.errors:PyObjectError',
|
||||
'pydantic.errors:PydanticTypeError',
|
||||
'pydantic.errors:PydanticValueError',
|
||||
'pydantic.errors:SequenceError',
|
||||
'pydantic.errors:SetError',
|
||||
'pydantic.errors:SetMaxLengthError',
|
||||
'pydantic.errors:SetMinLengthError',
|
||||
'pydantic.errors:StrError',
|
||||
'pydantic.errors:StrRegexError',
|
||||
'pydantic.errors:StrictBoolError',
|
||||
'pydantic.errors:SubclassError',
|
||||
'pydantic.errors:TimeError',
|
||||
'pydantic.errors:TupleError',
|
||||
'pydantic.errors:TupleLengthError',
|
||||
'pydantic.errors:UUIDError',
|
||||
'pydantic.errors:UUIDVersionError',
|
||||
'pydantic.errors:UrlError',
|
||||
'pydantic.errors:UrlExtraError',
|
||||
'pydantic.errors:UrlHostError',
|
||||
'pydantic.errors:UrlHostTldError',
|
||||
'pydantic.errors:UrlPortError',
|
||||
'pydantic.errors:UrlSchemeError',
|
||||
'pydantic.errors:UrlSchemePermittedError',
|
||||
'pydantic.errors:UrlUserInfoError',
|
||||
'pydantic.errors:WrongConstantError',
|
||||
'pydantic.main:validate_model',
|
||||
'pydantic.networks:stricturl',
|
||||
'pydantic:parse_file_as',
|
||||
'pydantic:parse_raw_as',
|
||||
'pydantic:stricturl',
|
||||
'pydantic.tools:parse_file_as',
|
||||
'pydantic.tools:parse_raw_as',
|
||||
'pydantic.types:ConstrainedBytes',
|
||||
'pydantic.types:ConstrainedDate',
|
||||
'pydantic.types:ConstrainedDecimal',
|
||||
'pydantic.types:ConstrainedFloat',
|
||||
'pydantic.types:ConstrainedFrozenSet',
|
||||
'pydantic.types:ConstrainedInt',
|
||||
'pydantic.types:ConstrainedList',
|
||||
'pydantic.types:ConstrainedSet',
|
||||
'pydantic.types:ConstrainedStr',
|
||||
'pydantic.types:JsonWrapper',
|
||||
'pydantic.types:NoneBytes',
|
||||
'pydantic.types:NoneStr',
|
||||
'pydantic.types:NoneStrBytes',
|
||||
'pydantic.types:StrBytes',
|
||||
'pydantic.typing:evaluate_forwardref',
|
||||
'pydantic.typing:AbstractSetIntStr',
|
||||
'pydantic.typing:AnyCallable',
|
||||
'pydantic.typing:AnyClassMethod',
|
||||
'pydantic.typing:CallableGenerator',
|
||||
'pydantic.typing:DictAny',
|
||||
'pydantic.typing:DictIntStrAny',
|
||||
'pydantic.typing:DictStrAny',
|
||||
'pydantic.typing:IntStr',
|
||||
'pydantic.typing:ListStr',
|
||||
'pydantic.typing:MappingIntStrAny',
|
||||
'pydantic.typing:NoArgAnyCallable',
|
||||
'pydantic.typing:NoneType',
|
||||
'pydantic.typing:ReprArgs',
|
||||
'pydantic.typing:SetStr',
|
||||
'pydantic.typing:StrPath',
|
||||
'pydantic.typing:TupleGenerator',
|
||||
'pydantic.typing:WithArgsTypes',
|
||||
'pydantic.typing:all_literal_values',
|
||||
'pydantic.typing:display_as_type',
|
||||
'pydantic.typing:get_all_type_hints',
|
||||
'pydantic.typing:get_args',
|
||||
'pydantic.typing:get_origin',
|
||||
'pydantic.typing:get_sub_types',
|
||||
'pydantic.typing:is_callable_type',
|
||||
'pydantic.typing:is_classvar',
|
||||
'pydantic.typing:is_finalvar',
|
||||
'pydantic.typing:is_literal_type',
|
||||
'pydantic.typing:is_namedtuple',
|
||||
'pydantic.typing:is_new_type',
|
||||
'pydantic.typing:is_none_type',
|
||||
'pydantic.typing:is_typeddict',
|
||||
'pydantic.typing:is_typeddict_special',
|
||||
'pydantic.typing:is_union',
|
||||
'pydantic.typing:new_type_supertype',
|
||||
'pydantic.typing:resolve_annotations',
|
||||
'pydantic.typing:typing_base',
|
||||
'pydantic.typing:update_field_forward_refs',
|
||||
'pydantic.typing:update_model_forward_refs',
|
||||
'pydantic.utils:ClassAttribute',
|
||||
'pydantic.utils:DUNDER_ATTRIBUTES',
|
||||
'pydantic.utils:PyObjectStr',
|
||||
'pydantic.utils:ValueItems',
|
||||
'pydantic.utils:almost_equal_floats',
|
||||
'pydantic.utils:get_discriminator_alias_and_values',
|
||||
'pydantic.utils:get_model',
|
||||
'pydantic.utils:get_unique_discriminator_alias',
|
||||
'pydantic.utils:in_ipython',
|
||||
'pydantic.utils:is_valid_identifier',
|
||||
'pydantic.utils:path_type',
|
||||
'pydantic.utils:validate_field_name',
|
||||
'pydantic:validate_model',
|
||||
}
|
||||
|
||||
|
||||
def getattr_migration(module: str) -> Callable[[str], Any]:
|
||||
"""Implement PEP 562 for objects that were either moved or removed on the migration
|
||||
to V2.
|
||||
|
||||
Args:
|
||||
module: The module name.
|
||||
|
||||
Returns:
|
||||
A callable that will raise an error if the object is not found.
|
||||
"""
|
||||
# This avoids circular import with errors.py.
|
||||
from .errors import PydanticImportError
|
||||
|
||||
def wrapper(name: str) -> object:
|
||||
"""Raise an error if the object is not found, or warn if it was moved.
|
||||
|
||||
In case it was moved, it still returns the object.
|
||||
|
||||
Args:
|
||||
name: The object name.
|
||||
|
||||
Returns:
|
||||
The object.
|
||||
"""
|
||||
if name == '__path__':
|
||||
raise AttributeError(f'module {module!r} has no attribute {name!r}')
|
||||
|
||||
import warnings
|
||||
|
||||
from ._internal._validators import import_string
|
||||
|
||||
import_path = f'{module}:{name}'
|
||||
if import_path in MOVED_IN_V2.keys():
|
||||
new_location = MOVED_IN_V2[import_path]
|
||||
warnings.warn(f'`{import_path}` has been moved to `{new_location}`.')
|
||||
return import_string(MOVED_IN_V2[import_path])
|
||||
if import_path in DEPRECATED_MOVED_IN_V2:
|
||||
# skip the warning here because a deprecation warning will be raised elsewhere
|
||||
return import_string(DEPRECATED_MOVED_IN_V2[import_path])
|
||||
if import_path in REDIRECT_TO_V1:
|
||||
new_location = REDIRECT_TO_V1[import_path]
|
||||
warnings.warn(
|
||||
f'`{import_path}` has been removed. We are importing from `{new_location}` instead.'
|
||||
'See the migration guide for more details: https://docs.pydantic.dev/latest/migration/'
|
||||
)
|
||||
return import_string(REDIRECT_TO_V1[import_path])
|
||||
if import_path == 'pydantic:BaseSettings':
|
||||
raise PydanticImportError(
|
||||
'`BaseSettings` has been moved to the `pydantic-settings` package. '
|
||||
f'See https://docs.pydantic.dev/{version_short()}/migration/#basesettings-has-moved-to-pydantic-settings '
|
||||
'for more details.'
|
||||
)
|
||||
if import_path in REMOVED_IN_V2:
|
||||
raise PydanticImportError(f'`{import_path}` has been removed in V2.')
|
||||
globals: dict[str, Any] = sys.modules[module].__dict__
|
||||
if name in globals:
|
||||
return globals[name]
|
||||
raise AttributeError(f'module {module!r} has no attribute {name!r}')
|
||||
|
||||
return wrapper
|
@ -0,0 +1,62 @@
|
||||
"""Alias generators for converting between different capitalization conventions."""
|
||||
|
||||
import re
|
||||
|
||||
__all__ = ('to_pascal', 'to_camel', 'to_snake')
|
||||
|
||||
# TODO: in V3, change the argument names to be more descriptive
|
||||
# Generally, don't only convert from snake_case, or name the functions
|
||||
# more specifically like snake_to_camel.
|
||||
|
||||
|
||||
def to_pascal(snake: str) -> str:
|
||||
"""Convert a snake_case string to PascalCase.
|
||||
|
||||
Args:
|
||||
snake: The string to convert.
|
||||
|
||||
Returns:
|
||||
The PascalCase string.
|
||||
"""
|
||||
camel = snake.title()
|
||||
return re.sub('([0-9A-Za-z])_(?=[0-9A-Z])', lambda m: m.group(1), camel)
|
||||
|
||||
|
||||
def to_camel(snake: str) -> str:
|
||||
"""Convert a snake_case string to camelCase.
|
||||
|
||||
Args:
|
||||
snake: The string to convert.
|
||||
|
||||
Returns:
|
||||
The converted camelCase string.
|
||||
"""
|
||||
# If the string is already in camelCase and does not contain a digit followed
|
||||
# by a lowercase letter, return it as it is
|
||||
if re.match('^[a-z]+[A-Za-z0-9]*$', snake) and not re.search(r'\d[a-z]', snake):
|
||||
return snake
|
||||
|
||||
camel = to_pascal(snake)
|
||||
return re.sub('(^_*[A-Z])', lambda m: m.group(1).lower(), camel)
|
||||
|
||||
|
||||
def to_snake(camel: str) -> str:
|
||||
"""Convert a PascalCase, camelCase, or kebab-case string to snake_case.
|
||||
|
||||
Args:
|
||||
camel: The string to convert.
|
||||
|
||||
Returns:
|
||||
The converted string in snake_case.
|
||||
"""
|
||||
# Handle the sequence of uppercase letters followed by a lowercase letter
|
||||
snake = re.sub(r'([A-Z]+)([A-Z][a-z])', lambda m: f'{m.group(1)}_{m.group(2)}', camel)
|
||||
# Insert an underscore between a lowercase letter and an uppercase letter
|
||||
snake = re.sub(r'([a-z])([A-Z])', lambda m: f'{m.group(1)}_{m.group(2)}', snake)
|
||||
# Insert an underscore between a digit and an uppercase letter
|
||||
snake = re.sub(r'([0-9])([A-Z])', lambda m: f'{m.group(1)}_{m.group(2)}', snake)
|
||||
# Insert an underscore between a lowercase letter and a digit
|
||||
snake = re.sub(r'([a-z])([0-9])', lambda m: f'{m.group(1)}_{m.group(2)}', snake)
|
||||
# Replace hyphens with underscores to handle kebab-case
|
||||
snake = snake.replace('-', '_')
|
||||
return snake.lower()
|
135
venv/lib/python3.11/site-packages/pydantic/aliases.py
Normal file
135
venv/lib/python3.11/site-packages/pydantic/aliases.py
Normal file
@ -0,0 +1,135 @@
|
||||
"""Support for alias configurations."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import dataclasses
|
||||
from typing import Any, Callable, Literal
|
||||
|
||||
from pydantic_core import PydanticUndefined
|
||||
|
||||
from ._internal import _internal_dataclass
|
||||
|
||||
__all__ = ('AliasGenerator', 'AliasPath', 'AliasChoices')
|
||||
|
||||
|
||||
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
||||
class AliasPath:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[`AliasPath` and `AliasChoices`](../concepts/alias.md#aliaspath-and-aliaschoices)
|
||||
|
||||
A data class used by `validation_alias` as a convenience to create aliases.
|
||||
|
||||
Attributes:
|
||||
path: A list of string or integer aliases.
|
||||
"""
|
||||
|
||||
path: list[int | str]
|
||||
|
||||
def __init__(self, first_arg: str, *args: str | int) -> None:
|
||||
self.path = [first_arg] + list(args)
|
||||
|
||||
def convert_to_aliases(self) -> list[str | int]:
|
||||
"""Converts arguments to a list of string or integer aliases.
|
||||
|
||||
Returns:
|
||||
The list of aliases.
|
||||
"""
|
||||
return self.path
|
||||
|
||||
def search_dict_for_path(self, d: dict) -> Any:
|
||||
"""Searches a dictionary for the path specified by the alias.
|
||||
|
||||
Returns:
|
||||
The value at the specified path, or `PydanticUndefined` if the path is not found.
|
||||
"""
|
||||
v = d
|
||||
for k in self.path:
|
||||
if isinstance(v, str):
|
||||
# disallow indexing into a str, like for AliasPath('x', 0) and x='abc'
|
||||
return PydanticUndefined
|
||||
try:
|
||||
v = v[k]
|
||||
except (KeyError, IndexError, TypeError):
|
||||
return PydanticUndefined
|
||||
return v
|
||||
|
||||
|
||||
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
||||
class AliasChoices:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[`AliasPath` and `AliasChoices`](../concepts/alias.md#aliaspath-and-aliaschoices)
|
||||
|
||||
A data class used by `validation_alias` as a convenience to create aliases.
|
||||
|
||||
Attributes:
|
||||
choices: A list containing a string or `AliasPath`.
|
||||
"""
|
||||
|
||||
choices: list[str | AliasPath]
|
||||
|
||||
def __init__(self, first_choice: str | AliasPath, *choices: str | AliasPath) -> None:
|
||||
self.choices = [first_choice] + list(choices)
|
||||
|
||||
def convert_to_aliases(self) -> list[list[str | int]]:
|
||||
"""Converts arguments to a list of lists containing string or integer aliases.
|
||||
|
||||
Returns:
|
||||
The list of aliases.
|
||||
"""
|
||||
aliases: list[list[str | int]] = []
|
||||
for c in self.choices:
|
||||
if isinstance(c, AliasPath):
|
||||
aliases.append(c.convert_to_aliases())
|
||||
else:
|
||||
aliases.append([c])
|
||||
return aliases
|
||||
|
||||
|
||||
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
||||
class AliasGenerator:
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[Using an `AliasGenerator`](../concepts/alias.md#using-an-aliasgenerator)
|
||||
|
||||
A data class used by `alias_generator` as a convenience to create various aliases.
|
||||
|
||||
Attributes:
|
||||
alias: A callable that takes a field name and returns an alias for it.
|
||||
validation_alias: A callable that takes a field name and returns a validation alias for it.
|
||||
serialization_alias: A callable that takes a field name and returns a serialization alias for it.
|
||||
"""
|
||||
|
||||
alias: Callable[[str], str] | None = None
|
||||
validation_alias: Callable[[str], str | AliasPath | AliasChoices] | None = None
|
||||
serialization_alias: Callable[[str], str] | None = None
|
||||
|
||||
def _generate_alias(
|
||||
self,
|
||||
alias_kind: Literal['alias', 'validation_alias', 'serialization_alias'],
|
||||
allowed_types: tuple[type[str] | type[AliasPath] | type[AliasChoices], ...],
|
||||
field_name: str,
|
||||
) -> str | AliasPath | AliasChoices | None:
|
||||
"""Generate an alias of the specified kind. Returns None if the alias generator is None.
|
||||
|
||||
Raises:
|
||||
TypeError: If the alias generator produces an invalid type.
|
||||
"""
|
||||
alias = None
|
||||
if alias_generator := getattr(self, alias_kind):
|
||||
alias = alias_generator(field_name)
|
||||
if alias and not isinstance(alias, allowed_types):
|
||||
raise TypeError(
|
||||
f'Invalid `{alias_kind}` type. `{alias_kind}` generator must produce one of `{allowed_types}`'
|
||||
)
|
||||
return alias
|
||||
|
||||
def generate_aliases(self, field_name: str) -> tuple[str | None, str | AliasPath | AliasChoices | None, str | None]:
|
||||
"""Generate `alias`, `validation_alias`, and `serialization_alias` for a field.
|
||||
|
||||
Returns:
|
||||
A tuple of three aliases - validation, alias, and serialization.
|
||||
"""
|
||||
alias = self._generate_alias('alias', (str,), field_name)
|
||||
validation_alias = self._generate_alias('validation_alias', (str, AliasChoices, AliasPath), field_name)
|
||||
serialization_alias = self._generate_alias('serialization_alias', (str,), field_name)
|
||||
|
||||
return alias, validation_alias, serialization_alias # type: ignore
|
122
venv/lib/python3.11/site-packages/pydantic/annotated_handlers.py
Normal file
122
venv/lib/python3.11/site-packages/pydantic/annotated_handlers.py
Normal file
@ -0,0 +1,122 @@
|
||||
"""Type annotations to use with `__get_pydantic_core_schema__` and `__get_pydantic_json_schema__`."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any, Union
|
||||
|
||||
from pydantic_core import core_schema
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._internal._namespace_utils import NamespacesTuple
|
||||
from .json_schema import JsonSchemaMode, JsonSchemaValue
|
||||
|
||||
CoreSchemaOrField = Union[
|
||||
core_schema.CoreSchema,
|
||||
core_schema.ModelField,
|
||||
core_schema.DataclassField,
|
||||
core_schema.TypedDictField,
|
||||
core_schema.ComputedField,
|
||||
]
|
||||
|
||||
__all__ = 'GetJsonSchemaHandler', 'GetCoreSchemaHandler'
|
||||
|
||||
|
||||
class GetJsonSchemaHandler:
|
||||
"""Handler to call into the next JSON schema generation function.
|
||||
|
||||
Attributes:
|
||||
mode: Json schema mode, can be `validation` or `serialization`.
|
||||
"""
|
||||
|
||||
mode: JsonSchemaMode
|
||||
|
||||
def __call__(self, core_schema: CoreSchemaOrField, /) -> JsonSchemaValue:
|
||||
"""Call the inner handler and get the JsonSchemaValue it returns.
|
||||
This will call the next JSON schema modifying function up until it calls
|
||||
into `pydantic.json_schema.GenerateJsonSchema`, which will raise a
|
||||
`pydantic.errors.PydanticInvalidForJsonSchema` error if it cannot generate
|
||||
a JSON schema.
|
||||
|
||||
Args:
|
||||
core_schema: A `pydantic_core.core_schema.CoreSchema`.
|
||||
|
||||
Returns:
|
||||
JsonSchemaValue: The JSON schema generated by the inner JSON schema modify
|
||||
functions.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def resolve_ref_schema(self, maybe_ref_json_schema: JsonSchemaValue, /) -> JsonSchemaValue:
|
||||
"""Get the real schema for a `{"$ref": ...}` schema.
|
||||
If the schema given is not a `$ref` schema, it will be returned as is.
|
||||
This means you don't have to check before calling this function.
|
||||
|
||||
Args:
|
||||
maybe_ref_json_schema: A JsonSchemaValue which may be a `$ref` schema.
|
||||
|
||||
Raises:
|
||||
LookupError: If the ref is not found.
|
||||
|
||||
Returns:
|
||||
JsonSchemaValue: A JsonSchemaValue that has no `$ref`.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class GetCoreSchemaHandler:
|
||||
"""Handler to call into the next CoreSchema schema generation function."""
|
||||
|
||||
def __call__(self, source_type: Any, /) -> core_schema.CoreSchema:
|
||||
"""Call the inner handler and get the CoreSchema it returns.
|
||||
This will call the next CoreSchema modifying function up until it calls
|
||||
into Pydantic's internal schema generation machinery, which will raise a
|
||||
`pydantic.errors.PydanticSchemaGenerationError` error if it cannot generate
|
||||
a CoreSchema for the given source type.
|
||||
|
||||
Args:
|
||||
source_type: The input type.
|
||||
|
||||
Returns:
|
||||
CoreSchema: The `pydantic-core` CoreSchema generated.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def generate_schema(self, source_type: Any, /) -> core_schema.CoreSchema:
|
||||
"""Generate a schema unrelated to the current context.
|
||||
Use this function if e.g. you are handling schema generation for a sequence
|
||||
and want to generate a schema for its items.
|
||||
Otherwise, you may end up doing something like applying a `min_length` constraint
|
||||
that was intended for the sequence itself to its items!
|
||||
|
||||
Args:
|
||||
source_type: The input type.
|
||||
|
||||
Returns:
|
||||
CoreSchema: The `pydantic-core` CoreSchema generated.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def resolve_ref_schema(self, maybe_ref_schema: core_schema.CoreSchema, /) -> core_schema.CoreSchema:
|
||||
"""Get the real schema for a `definition-ref` schema.
|
||||
If the schema given is not a `definition-ref` schema, it will be returned as is.
|
||||
This means you don't have to check before calling this function.
|
||||
|
||||
Args:
|
||||
maybe_ref_schema: A `CoreSchema`, `ref`-based or not.
|
||||
|
||||
Raises:
|
||||
LookupError: If the `ref` is not found.
|
||||
|
||||
Returns:
|
||||
A concrete `CoreSchema`.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def field_name(self) -> str | None:
|
||||
"""Get the name of the closest field to this validator."""
|
||||
raise NotImplementedError
|
||||
|
||||
def _get_types_namespace(self) -> NamespacesTuple:
|
||||
"""Internal method used during type resolution for serializer annotations."""
|
||||
raise NotImplementedError
|
@ -0,0 +1,5 @@
|
||||
"""`class_validators` module is a backport module from V1."""
|
||||
|
||||
from ._migration import getattr_migration
|
||||
|
||||
__getattr__ = getattr_migration(__name__)
|
604
venv/lib/python3.11/site-packages/pydantic/color.py
Normal file
604
venv/lib/python3.11/site-packages/pydantic/color.py
Normal file
@ -0,0 +1,604 @@
|
||||
"""Color definitions are used as per the CSS3
|
||||
[CSS Color Module Level 3](http://www.w3.org/TR/css3-color/#svg-color) specification.
|
||||
|
||||
A few colors have multiple names referring to the sames colors, eg. `grey` and `gray` or `aqua` and `cyan`.
|
||||
|
||||
In these cases the _last_ color when sorted alphabetically takes preferences,
|
||||
eg. `Color((0, 255, 255)).as_named() == 'cyan'` because "cyan" comes after "aqua".
|
||||
|
||||
Warning: Deprecated
|
||||
The `Color` class is deprecated, use `pydantic_extra_types` instead.
|
||||
See [`pydantic-extra-types.Color`](../usage/types/extra_types/color_types.md)
|
||||
for more information.
|
||||
"""
|
||||
|
||||
import math
|
||||
import re
|
||||
from colorsys import hls_to_rgb, rgb_to_hls
|
||||
from typing import Any, Callable, Optional, Union, cast
|
||||
|
||||
from pydantic_core import CoreSchema, PydanticCustomError, core_schema
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from ._internal import _repr
|
||||
from ._internal._schema_generation_shared import GetJsonSchemaHandler as _GetJsonSchemaHandler
|
||||
from .json_schema import JsonSchemaValue
|
||||
from .warnings import PydanticDeprecatedSince20
|
||||
|
||||
ColorTuple = Union[tuple[int, int, int], tuple[int, int, int, float]]
|
||||
ColorType = Union[ColorTuple, str]
|
||||
HslColorTuple = Union[tuple[float, float, float], tuple[float, float, float, float]]
|
||||
|
||||
|
||||
class RGBA:
|
||||
"""Internal use only as a representation of a color."""
|
||||
|
||||
__slots__ = 'r', 'g', 'b', 'alpha', '_tuple'
|
||||
|
||||
def __init__(self, r: float, g: float, b: float, alpha: Optional[float]):
|
||||
self.r = r
|
||||
self.g = g
|
||||
self.b = b
|
||||
self.alpha = alpha
|
||||
|
||||
self._tuple: tuple[float, float, float, Optional[float]] = (r, g, b, alpha)
|
||||
|
||||
def __getitem__(self, item: Any) -> Any:
|
||||
return self._tuple[item]
|
||||
|
||||
|
||||
# these are not compiled here to avoid import slowdown, they'll be compiled the first time they're used, then cached
|
||||
_r_255 = r'(\d{1,3}(?:\.\d+)?)'
|
||||
_r_comma = r'\s*,\s*'
|
||||
_r_alpha = r'(\d(?:\.\d+)?|\.\d+|\d{1,2}%)'
|
||||
_r_h = r'(-?\d+(?:\.\d+)?|-?\.\d+)(deg|rad|turn)?'
|
||||
_r_sl = r'(\d{1,3}(?:\.\d+)?)%'
|
||||
r_hex_short = r'\s*(?:#|0x)?([0-9a-f])([0-9a-f])([0-9a-f])([0-9a-f])?\s*'
|
||||
r_hex_long = r'\s*(?:#|0x)?([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})?\s*'
|
||||
# CSS3 RGB examples: rgb(0, 0, 0), rgba(0, 0, 0, 0.5), rgba(0, 0, 0, 50%)
|
||||
r_rgb = rf'\s*rgba?\(\s*{_r_255}{_r_comma}{_r_255}{_r_comma}{_r_255}(?:{_r_comma}{_r_alpha})?\s*\)\s*'
|
||||
# CSS3 HSL examples: hsl(270, 60%, 50%), hsla(270, 60%, 50%, 0.5), hsla(270, 60%, 50%, 50%)
|
||||
r_hsl = rf'\s*hsla?\(\s*{_r_h}{_r_comma}{_r_sl}{_r_comma}{_r_sl}(?:{_r_comma}{_r_alpha})?\s*\)\s*'
|
||||
# CSS4 RGB examples: rgb(0 0 0), rgb(0 0 0 / 0.5), rgb(0 0 0 / 50%), rgba(0 0 0 / 50%)
|
||||
r_rgb_v4_style = rf'\s*rgba?\(\s*{_r_255}\s+{_r_255}\s+{_r_255}(?:\s*/\s*{_r_alpha})?\s*\)\s*'
|
||||
# CSS4 HSL examples: hsl(270 60% 50%), hsl(270 60% 50% / 0.5), hsl(270 60% 50% / 50%), hsla(270 60% 50% / 50%)
|
||||
r_hsl_v4_style = rf'\s*hsla?\(\s*{_r_h}\s+{_r_sl}\s+{_r_sl}(?:\s*/\s*{_r_alpha})?\s*\)\s*'
|
||||
|
||||
# colors where the two hex characters are the same, if all colors match this the short version of hex colors can be used
|
||||
repeat_colors = {int(c * 2, 16) for c in '0123456789abcdef'}
|
||||
rads = 2 * math.pi
|
||||
|
||||
|
||||
@deprecated(
|
||||
'The `Color` class is deprecated, use `pydantic_extra_types` instead. '
|
||||
'See https://docs.pydantic.dev/latest/api/pydantic_extra_types_color/.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
)
|
||||
class Color(_repr.Representation):
|
||||
"""Represents a color."""
|
||||
|
||||
__slots__ = '_original', '_rgba'
|
||||
|
||||
def __init__(self, value: ColorType) -> None:
|
||||
self._rgba: RGBA
|
||||
self._original: ColorType
|
||||
if isinstance(value, (tuple, list)):
|
||||
self._rgba = parse_tuple(value)
|
||||
elif isinstance(value, str):
|
||||
self._rgba = parse_str(value)
|
||||
elif isinstance(value, Color):
|
||||
self._rgba = value._rgba
|
||||
value = value._original
|
||||
else:
|
||||
raise PydanticCustomError(
|
||||
'color_error', 'value is not a valid color: value must be a tuple, list or string'
|
||||
)
|
||||
|
||||
# if we've got here value must be a valid color
|
||||
self._original = value
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(
|
||||
cls, core_schema: core_schema.CoreSchema, handler: _GetJsonSchemaHandler
|
||||
) -> JsonSchemaValue:
|
||||
field_schema = {}
|
||||
field_schema.update(type='string', format='color')
|
||||
return field_schema
|
||||
|
||||
def original(self) -> ColorType:
|
||||
"""Original value passed to `Color`."""
|
||||
return self._original
|
||||
|
||||
def as_named(self, *, fallback: bool = False) -> str:
|
||||
"""Returns the name of the color if it can be found in `COLORS_BY_VALUE` dictionary,
|
||||
otherwise returns the hexadecimal representation of the color or raises `ValueError`.
|
||||
|
||||
Args:
|
||||
fallback: If True, falls back to returning the hexadecimal representation of
|
||||
the color instead of raising a ValueError when no named color is found.
|
||||
|
||||
Returns:
|
||||
The name of the color, or the hexadecimal representation of the color.
|
||||
|
||||
Raises:
|
||||
ValueError: When no named color is found and fallback is `False`.
|
||||
"""
|
||||
if self._rgba.alpha is None:
|
||||
rgb = cast(tuple[int, int, int], self.as_rgb_tuple())
|
||||
try:
|
||||
return COLORS_BY_VALUE[rgb]
|
||||
except KeyError as e:
|
||||
if fallback:
|
||||
return self.as_hex()
|
||||
else:
|
||||
raise ValueError('no named color found, use fallback=True, as_hex() or as_rgb()') from e
|
||||
else:
|
||||
return self.as_hex()
|
||||
|
||||
def as_hex(self) -> str:
|
||||
"""Returns the hexadecimal representation of the color.
|
||||
|
||||
Hex string representing the color can be 3, 4, 6, or 8 characters depending on whether the string
|
||||
a "short" representation of the color is possible and whether there's an alpha channel.
|
||||
|
||||
Returns:
|
||||
The hexadecimal representation of the color.
|
||||
"""
|
||||
values = [float_to_255(c) for c in self._rgba[:3]]
|
||||
if self._rgba.alpha is not None:
|
||||
values.append(float_to_255(self._rgba.alpha))
|
||||
|
||||
as_hex = ''.join(f'{v:02x}' for v in values)
|
||||
if all(c in repeat_colors for c in values):
|
||||
as_hex = ''.join(as_hex[c] for c in range(0, len(as_hex), 2))
|
||||
return '#' + as_hex
|
||||
|
||||
def as_rgb(self) -> str:
|
||||
"""Color as an `rgb(<r>, <g>, <b>)` or `rgba(<r>, <g>, <b>, <a>)` string."""
|
||||
if self._rgba.alpha is None:
|
||||
return f'rgb({float_to_255(self._rgba.r)}, {float_to_255(self._rgba.g)}, {float_to_255(self._rgba.b)})'
|
||||
else:
|
||||
return (
|
||||
f'rgba({float_to_255(self._rgba.r)}, {float_to_255(self._rgba.g)}, {float_to_255(self._rgba.b)}, '
|
||||
f'{round(self._alpha_float(), 2)})'
|
||||
)
|
||||
|
||||
def as_rgb_tuple(self, *, alpha: Optional[bool] = None) -> ColorTuple:
|
||||
"""Returns the color as an RGB or RGBA tuple.
|
||||
|
||||
Args:
|
||||
alpha: Whether to include the alpha channel. There are three options for this input:
|
||||
|
||||
- `None` (default): Include alpha only if it's set. (e.g. not `None`)
|
||||
- `True`: Always include alpha.
|
||||
- `False`: Always omit alpha.
|
||||
|
||||
Returns:
|
||||
A tuple that contains the values of the red, green, and blue channels in the range 0 to 255.
|
||||
If alpha is included, it is in the range 0 to 1.
|
||||
"""
|
||||
r, g, b = (float_to_255(c) for c in self._rgba[:3])
|
||||
if alpha is None:
|
||||
if self._rgba.alpha is None:
|
||||
return r, g, b
|
||||
else:
|
||||
return r, g, b, self._alpha_float()
|
||||
elif alpha:
|
||||
return r, g, b, self._alpha_float()
|
||||
else:
|
||||
# alpha is False
|
||||
return r, g, b
|
||||
|
||||
def as_hsl(self) -> str:
|
||||
"""Color as an `hsl(<h>, <s>, <l>)` or `hsl(<h>, <s>, <l>, <a>)` string."""
|
||||
if self._rgba.alpha is None:
|
||||
h, s, li = self.as_hsl_tuple(alpha=False) # type: ignore
|
||||
return f'hsl({h * 360:0.0f}, {s:0.0%}, {li:0.0%})'
|
||||
else:
|
||||
h, s, li, a = self.as_hsl_tuple(alpha=True) # type: ignore
|
||||
return f'hsl({h * 360:0.0f}, {s:0.0%}, {li:0.0%}, {round(a, 2)})'
|
||||
|
||||
def as_hsl_tuple(self, *, alpha: Optional[bool] = None) -> HslColorTuple:
|
||||
"""Returns the color as an HSL or HSLA tuple.
|
||||
|
||||
Args:
|
||||
alpha: Whether to include the alpha channel.
|
||||
|
||||
- `None` (default): Include the alpha channel only if it's set (e.g. not `None`).
|
||||
- `True`: Always include alpha.
|
||||
- `False`: Always omit alpha.
|
||||
|
||||
Returns:
|
||||
The color as a tuple of hue, saturation, lightness, and alpha (if included).
|
||||
All elements are in the range 0 to 1.
|
||||
|
||||
Note:
|
||||
This is HSL as used in HTML and most other places, not HLS as used in Python's `colorsys`.
|
||||
"""
|
||||
h, l, s = rgb_to_hls(self._rgba.r, self._rgba.g, self._rgba.b) # noqa: E741
|
||||
if alpha is None:
|
||||
if self._rgba.alpha is None:
|
||||
return h, s, l
|
||||
else:
|
||||
return h, s, l, self._alpha_float()
|
||||
if alpha:
|
||||
return h, s, l, self._alpha_float()
|
||||
else:
|
||||
# alpha is False
|
||||
return h, s, l
|
||||
|
||||
def _alpha_float(self) -> float:
|
||||
return 1 if self._rgba.alpha is None else self._rgba.alpha
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, source: type[Any], handler: Callable[[Any], CoreSchema]
|
||||
) -> core_schema.CoreSchema:
|
||||
return core_schema.with_info_plain_validator_function(
|
||||
cls._validate, serialization=core_schema.to_string_ser_schema()
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _validate(cls, __input_value: Any, _: Any) -> 'Color':
|
||||
return cls(__input_value)
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.as_named(fallback=True)
|
||||
|
||||
def __repr_args__(self) -> '_repr.ReprArgs':
|
||||
return [(None, self.as_named(fallback=True))] + [('rgb', self.as_rgb_tuple())]
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return isinstance(other, Color) and self.as_rgb_tuple() == other.as_rgb_tuple()
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(self.as_rgb_tuple())
|
||||
|
||||
|
||||
def parse_tuple(value: tuple[Any, ...]) -> RGBA:
|
||||
"""Parse a tuple or list to get RGBA values.
|
||||
|
||||
Args:
|
||||
value: A tuple or list.
|
||||
|
||||
Returns:
|
||||
An `RGBA` tuple parsed from the input tuple.
|
||||
|
||||
Raises:
|
||||
PydanticCustomError: If tuple is not valid.
|
||||
"""
|
||||
if len(value) == 3:
|
||||
r, g, b = (parse_color_value(v) for v in value)
|
||||
return RGBA(r, g, b, None)
|
||||
elif len(value) == 4:
|
||||
r, g, b = (parse_color_value(v) for v in value[:3])
|
||||
return RGBA(r, g, b, parse_float_alpha(value[3]))
|
||||
else:
|
||||
raise PydanticCustomError('color_error', 'value is not a valid color: tuples must have length 3 or 4')
|
||||
|
||||
|
||||
def parse_str(value: str) -> RGBA:
|
||||
"""Parse a string representing a color to an RGBA tuple.
|
||||
|
||||
Possible formats for the input string include:
|
||||
|
||||
* named color, see `COLORS_BY_NAME`
|
||||
* hex short eg. `<prefix>fff` (prefix can be `#`, `0x` or nothing)
|
||||
* hex long eg. `<prefix>ffffff` (prefix can be `#`, `0x` or nothing)
|
||||
* `rgb(<r>, <g>, <b>)`
|
||||
* `rgba(<r>, <g>, <b>, <a>)`
|
||||
|
||||
Args:
|
||||
value: A string representing a color.
|
||||
|
||||
Returns:
|
||||
An `RGBA` tuple parsed from the input string.
|
||||
|
||||
Raises:
|
||||
ValueError: If the input string cannot be parsed to an RGBA tuple.
|
||||
"""
|
||||
value_lower = value.lower()
|
||||
try:
|
||||
r, g, b = COLORS_BY_NAME[value_lower]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
return ints_to_rgba(r, g, b, None)
|
||||
|
||||
m = re.fullmatch(r_hex_short, value_lower)
|
||||
if m:
|
||||
*rgb, a = m.groups()
|
||||
r, g, b = (int(v * 2, 16) for v in rgb)
|
||||
if a:
|
||||
alpha: Optional[float] = int(a * 2, 16) / 255
|
||||
else:
|
||||
alpha = None
|
||||
return ints_to_rgba(r, g, b, alpha)
|
||||
|
||||
m = re.fullmatch(r_hex_long, value_lower)
|
||||
if m:
|
||||
*rgb, a = m.groups()
|
||||
r, g, b = (int(v, 16) for v in rgb)
|
||||
if a:
|
||||
alpha = int(a, 16) / 255
|
||||
else:
|
||||
alpha = None
|
||||
return ints_to_rgba(r, g, b, alpha)
|
||||
|
||||
m = re.fullmatch(r_rgb, value_lower) or re.fullmatch(r_rgb_v4_style, value_lower)
|
||||
if m:
|
||||
return ints_to_rgba(*m.groups()) # type: ignore
|
||||
|
||||
m = re.fullmatch(r_hsl, value_lower) or re.fullmatch(r_hsl_v4_style, value_lower)
|
||||
if m:
|
||||
return parse_hsl(*m.groups()) # type: ignore
|
||||
|
||||
raise PydanticCustomError('color_error', 'value is not a valid color: string not recognised as a valid color')
|
||||
|
||||
|
||||
def ints_to_rgba(r: Union[int, str], g: Union[int, str], b: Union[int, str], alpha: Optional[float] = None) -> RGBA:
|
||||
"""Converts integer or string values for RGB color and an optional alpha value to an `RGBA` object.
|
||||
|
||||
Args:
|
||||
r: An integer or string representing the red color value.
|
||||
g: An integer or string representing the green color value.
|
||||
b: An integer or string representing the blue color value.
|
||||
alpha: A float representing the alpha value. Defaults to None.
|
||||
|
||||
Returns:
|
||||
An instance of the `RGBA` class with the corresponding color and alpha values.
|
||||
"""
|
||||
return RGBA(parse_color_value(r), parse_color_value(g), parse_color_value(b), parse_float_alpha(alpha))
|
||||
|
||||
|
||||
def parse_color_value(value: Union[int, str], max_val: int = 255) -> float:
|
||||
"""Parse the color value provided and return a number between 0 and 1.
|
||||
|
||||
Args:
|
||||
value: An integer or string color value.
|
||||
max_val: Maximum range value. Defaults to 255.
|
||||
|
||||
Raises:
|
||||
PydanticCustomError: If the value is not a valid color.
|
||||
|
||||
Returns:
|
||||
A number between 0 and 1.
|
||||
"""
|
||||
try:
|
||||
color = float(value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('color_error', 'value is not a valid color: color values must be a valid number')
|
||||
if 0 <= color <= max_val:
|
||||
return color / max_val
|
||||
else:
|
||||
raise PydanticCustomError(
|
||||
'color_error',
|
||||
'value is not a valid color: color values must be in the range 0 to {max_val}',
|
||||
{'max_val': max_val},
|
||||
)
|
||||
|
||||
|
||||
def parse_float_alpha(value: Union[None, str, float, int]) -> Optional[float]:
|
||||
"""Parse an alpha value checking it's a valid float in the range 0 to 1.
|
||||
|
||||
Args:
|
||||
value: The input value to parse.
|
||||
|
||||
Returns:
|
||||
The parsed value as a float, or `None` if the value was None or equal 1.
|
||||
|
||||
Raises:
|
||||
PydanticCustomError: If the input value cannot be successfully parsed as a float in the expected range.
|
||||
"""
|
||||
if value is None:
|
||||
return None
|
||||
try:
|
||||
if isinstance(value, str) and value.endswith('%'):
|
||||
alpha = float(value[:-1]) / 100
|
||||
else:
|
||||
alpha = float(value)
|
||||
except ValueError:
|
||||
raise PydanticCustomError('color_error', 'value is not a valid color: alpha values must be a valid float')
|
||||
|
||||
if math.isclose(alpha, 1):
|
||||
return None
|
||||
elif 0 <= alpha <= 1:
|
||||
return alpha
|
||||
else:
|
||||
raise PydanticCustomError('color_error', 'value is not a valid color: alpha values must be in the range 0 to 1')
|
||||
|
||||
|
||||
def parse_hsl(h: str, h_units: str, sat: str, light: str, alpha: Optional[float] = None) -> RGBA:
|
||||
"""Parse raw hue, saturation, lightness, and alpha values and convert to RGBA.
|
||||
|
||||
Args:
|
||||
h: The hue value.
|
||||
h_units: The unit for hue value.
|
||||
sat: The saturation value.
|
||||
light: The lightness value.
|
||||
alpha: Alpha value.
|
||||
|
||||
Returns:
|
||||
An instance of `RGBA`.
|
||||
"""
|
||||
s_value, l_value = parse_color_value(sat, 100), parse_color_value(light, 100)
|
||||
|
||||
h_value = float(h)
|
||||
if h_units in {None, 'deg'}:
|
||||
h_value = h_value % 360 / 360
|
||||
elif h_units == 'rad':
|
||||
h_value = h_value % rads / rads
|
||||
else:
|
||||
# turns
|
||||
h_value = h_value % 1
|
||||
|
||||
r, g, b = hls_to_rgb(h_value, l_value, s_value)
|
||||
return RGBA(r, g, b, parse_float_alpha(alpha))
|
||||
|
||||
|
||||
def float_to_255(c: float) -> int:
|
||||
"""Converts a float value between 0 and 1 (inclusive) to an integer between 0 and 255 (inclusive).
|
||||
|
||||
Args:
|
||||
c: The float value to be converted. Must be between 0 and 1 (inclusive).
|
||||
|
||||
Returns:
|
||||
The integer equivalent of the given float value rounded to the nearest whole number.
|
||||
|
||||
Raises:
|
||||
ValueError: If the given float value is outside the acceptable range of 0 to 1 (inclusive).
|
||||
"""
|
||||
return int(round(c * 255))
|
||||
|
||||
|
||||
COLORS_BY_NAME = {
|
||||
'aliceblue': (240, 248, 255),
|
||||
'antiquewhite': (250, 235, 215),
|
||||
'aqua': (0, 255, 255),
|
||||
'aquamarine': (127, 255, 212),
|
||||
'azure': (240, 255, 255),
|
||||
'beige': (245, 245, 220),
|
||||
'bisque': (255, 228, 196),
|
||||
'black': (0, 0, 0),
|
||||
'blanchedalmond': (255, 235, 205),
|
||||
'blue': (0, 0, 255),
|
||||
'blueviolet': (138, 43, 226),
|
||||
'brown': (165, 42, 42),
|
||||
'burlywood': (222, 184, 135),
|
||||
'cadetblue': (95, 158, 160),
|
||||
'chartreuse': (127, 255, 0),
|
||||
'chocolate': (210, 105, 30),
|
||||
'coral': (255, 127, 80),
|
||||
'cornflowerblue': (100, 149, 237),
|
||||
'cornsilk': (255, 248, 220),
|
||||
'crimson': (220, 20, 60),
|
||||
'cyan': (0, 255, 255),
|
||||
'darkblue': (0, 0, 139),
|
||||
'darkcyan': (0, 139, 139),
|
||||
'darkgoldenrod': (184, 134, 11),
|
||||
'darkgray': (169, 169, 169),
|
||||
'darkgreen': (0, 100, 0),
|
||||
'darkgrey': (169, 169, 169),
|
||||
'darkkhaki': (189, 183, 107),
|
||||
'darkmagenta': (139, 0, 139),
|
||||
'darkolivegreen': (85, 107, 47),
|
||||
'darkorange': (255, 140, 0),
|
||||
'darkorchid': (153, 50, 204),
|
||||
'darkred': (139, 0, 0),
|
||||
'darksalmon': (233, 150, 122),
|
||||
'darkseagreen': (143, 188, 143),
|
||||
'darkslateblue': (72, 61, 139),
|
||||
'darkslategray': (47, 79, 79),
|
||||
'darkslategrey': (47, 79, 79),
|
||||
'darkturquoise': (0, 206, 209),
|
||||
'darkviolet': (148, 0, 211),
|
||||
'deeppink': (255, 20, 147),
|
||||
'deepskyblue': (0, 191, 255),
|
||||
'dimgray': (105, 105, 105),
|
||||
'dimgrey': (105, 105, 105),
|
||||
'dodgerblue': (30, 144, 255),
|
||||
'firebrick': (178, 34, 34),
|
||||
'floralwhite': (255, 250, 240),
|
||||
'forestgreen': (34, 139, 34),
|
||||
'fuchsia': (255, 0, 255),
|
||||
'gainsboro': (220, 220, 220),
|
||||
'ghostwhite': (248, 248, 255),
|
||||
'gold': (255, 215, 0),
|
||||
'goldenrod': (218, 165, 32),
|
||||
'gray': (128, 128, 128),
|
||||
'green': (0, 128, 0),
|
||||
'greenyellow': (173, 255, 47),
|
||||
'grey': (128, 128, 128),
|
||||
'honeydew': (240, 255, 240),
|
||||
'hotpink': (255, 105, 180),
|
||||
'indianred': (205, 92, 92),
|
||||
'indigo': (75, 0, 130),
|
||||
'ivory': (255, 255, 240),
|
||||
'khaki': (240, 230, 140),
|
||||
'lavender': (230, 230, 250),
|
||||
'lavenderblush': (255, 240, 245),
|
||||
'lawngreen': (124, 252, 0),
|
||||
'lemonchiffon': (255, 250, 205),
|
||||
'lightblue': (173, 216, 230),
|
||||
'lightcoral': (240, 128, 128),
|
||||
'lightcyan': (224, 255, 255),
|
||||
'lightgoldenrodyellow': (250, 250, 210),
|
||||
'lightgray': (211, 211, 211),
|
||||
'lightgreen': (144, 238, 144),
|
||||
'lightgrey': (211, 211, 211),
|
||||
'lightpink': (255, 182, 193),
|
||||
'lightsalmon': (255, 160, 122),
|
||||
'lightseagreen': (32, 178, 170),
|
||||
'lightskyblue': (135, 206, 250),
|
||||
'lightslategray': (119, 136, 153),
|
||||
'lightslategrey': (119, 136, 153),
|
||||
'lightsteelblue': (176, 196, 222),
|
||||
'lightyellow': (255, 255, 224),
|
||||
'lime': (0, 255, 0),
|
||||
'limegreen': (50, 205, 50),
|
||||
'linen': (250, 240, 230),
|
||||
'magenta': (255, 0, 255),
|
||||
'maroon': (128, 0, 0),
|
||||
'mediumaquamarine': (102, 205, 170),
|
||||
'mediumblue': (0, 0, 205),
|
||||
'mediumorchid': (186, 85, 211),
|
||||
'mediumpurple': (147, 112, 219),
|
||||
'mediumseagreen': (60, 179, 113),
|
||||
'mediumslateblue': (123, 104, 238),
|
||||
'mediumspringgreen': (0, 250, 154),
|
||||
'mediumturquoise': (72, 209, 204),
|
||||
'mediumvioletred': (199, 21, 133),
|
||||
'midnightblue': (25, 25, 112),
|
||||
'mintcream': (245, 255, 250),
|
||||
'mistyrose': (255, 228, 225),
|
||||
'moccasin': (255, 228, 181),
|
||||
'navajowhite': (255, 222, 173),
|
||||
'navy': (0, 0, 128),
|
||||
'oldlace': (253, 245, 230),
|
||||
'olive': (128, 128, 0),
|
||||
'olivedrab': (107, 142, 35),
|
||||
'orange': (255, 165, 0),
|
||||
'orangered': (255, 69, 0),
|
||||
'orchid': (218, 112, 214),
|
||||
'palegoldenrod': (238, 232, 170),
|
||||
'palegreen': (152, 251, 152),
|
||||
'paleturquoise': (175, 238, 238),
|
||||
'palevioletred': (219, 112, 147),
|
||||
'papayawhip': (255, 239, 213),
|
||||
'peachpuff': (255, 218, 185),
|
||||
'peru': (205, 133, 63),
|
||||
'pink': (255, 192, 203),
|
||||
'plum': (221, 160, 221),
|
||||
'powderblue': (176, 224, 230),
|
||||
'purple': (128, 0, 128),
|
||||
'red': (255, 0, 0),
|
||||
'rosybrown': (188, 143, 143),
|
||||
'royalblue': (65, 105, 225),
|
||||
'saddlebrown': (139, 69, 19),
|
||||
'salmon': (250, 128, 114),
|
||||
'sandybrown': (244, 164, 96),
|
||||
'seagreen': (46, 139, 87),
|
||||
'seashell': (255, 245, 238),
|
||||
'sienna': (160, 82, 45),
|
||||
'silver': (192, 192, 192),
|
||||
'skyblue': (135, 206, 235),
|
||||
'slateblue': (106, 90, 205),
|
||||
'slategray': (112, 128, 144),
|
||||
'slategrey': (112, 128, 144),
|
||||
'snow': (255, 250, 250),
|
||||
'springgreen': (0, 255, 127),
|
||||
'steelblue': (70, 130, 180),
|
||||
'tan': (210, 180, 140),
|
||||
'teal': (0, 128, 128),
|
||||
'thistle': (216, 191, 216),
|
||||
'tomato': (255, 99, 71),
|
||||
'turquoise': (64, 224, 208),
|
||||
'violet': (238, 130, 238),
|
||||
'wheat': (245, 222, 179),
|
||||
'white': (255, 255, 255),
|
||||
'whitesmoke': (245, 245, 245),
|
||||
'yellow': (255, 255, 0),
|
||||
'yellowgreen': (154, 205, 50),
|
||||
}
|
||||
|
||||
COLORS_BY_VALUE = {v: k for k, v in COLORS_BY_NAME.items()}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user