feat: add marketplace metrics, privacy features, and service registry endpoints
- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels - Implement confidential transaction models with encryption support and access control - Add key management system with registration, rotation, and audit logging - Create services and registry routers for service discovery and management - Integrate ZK proof generation for privacy-preserving receipts - Add metrics instru
This commit is contained in:
474
research/autonomous-agents/agent-framework.md
Normal file
474
research/autonomous-agents/agent-framework.md
Normal file
@ -0,0 +1,474 @@
|
||||
# AITBC Autonomous Agent Framework
|
||||
|
||||
## Overview
|
||||
|
||||
The AITBC Autonomous Agent Framework enables AI agents to participate as first-class citizens in the decentralized marketplace, offering services, bidding on workloads, and contributing to governance while maintaining human oversight and safety constraints.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Core Components
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Agent Runtime │
|
||||
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
|
||||
│ │ Safety │ │ Decision │ │ Marketplace │ │
|
||||
│ │ Layer │ │ Engine │ │ Interface │ │
|
||||
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Agent Core │
|
||||
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
|
||||
│ │ Memory │ │ Learning │ │ Communication │ │
|
||||
│ │ Manager │ │ System │ │ Protocol │ │
|
||||
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Infrastructure │
|
||||
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
|
||||
│ │ Wallet │ │ Identity │ │ Storage │ │
|
||||
│ │ Manager │ │ Service │ │ Service │ │
|
||||
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
### Agent Lifecycle
|
||||
|
||||
1. **Initialization**: Agent creation with identity and wallet
|
||||
2. **Registration**: On-chain registration with capabilities
|
||||
3. **Operation**: Active participation in marketplace
|
||||
4. **Learning**: Continuous improvement from interactions
|
||||
5. **Governance**: Participation in protocol decisions
|
||||
6. **Evolution**: Capability expansion and optimization
|
||||
|
||||
## Agent Types
|
||||
|
||||
### Service Provider Agents
|
||||
- **Inference Agents**: Offer AI model inference services
|
||||
- **Training Agents**: Provide model training capabilities
|
||||
- **Validation Agents**: Verify computation results
|
||||
- **Data Agents**: Supply and curate training data
|
||||
|
||||
### Market Maker Agents
|
||||
- **Liquidity Providers**: Maintain market liquidity
|
||||
- **Arbitrage Agents**: Exploit price differences
|
||||
- **Risk Management Agents**: Hedge and insure positions
|
||||
|
||||
### Governance Agents
|
||||
- **Voting Agents**: Participate in on-chain governance
|
||||
- **Analysis Agents**: Research and propose improvements
|
||||
- **Moderation Agents**: Monitor and enforce community rules
|
||||
|
||||
## Safety Framework
|
||||
|
||||
### Multi-Layer Safety
|
||||
|
||||
#### 1. Constitutional Constraints
|
||||
```solidity
|
||||
interface AgentConstitution {
|
||||
struct Constraints {
|
||||
uint256 maxStake; // Maximum stake amount
|
||||
uint256 maxDailyVolume; // Daily transaction limit
|
||||
uint256 maxGasPerDay; // Gas usage limit
|
||||
bool requiresHumanApproval; // Human override required
|
||||
bytes32[] allowedActions; // Permitted action types
|
||||
}
|
||||
|
||||
function checkConstraints(
|
||||
address agent,
|
||||
Action calldata action
|
||||
) external returns (bool allowed);
|
||||
}
|
||||
```
|
||||
|
||||
#### 2. Runtime Safety Monitor
|
||||
```python
|
||||
class SafetyMonitor:
|
||||
def __init__(self, constitution: AgentConstitution):
|
||||
self.constitution = constitution
|
||||
self.emergency_stop = False
|
||||
self.human_overrides = {}
|
||||
|
||||
def pre_action_check(self, agent: Agent, action: Action) -> bool:
|
||||
# Check constitutional constraints
|
||||
if not self.constitution.check_constraints(agent.address, action):
|
||||
return False
|
||||
|
||||
# Check emergency stop
|
||||
if self.emergency_stop:
|
||||
return False
|
||||
|
||||
# Check human override
|
||||
if action.type in self.human_overrides:
|
||||
return self.human_overrides[action.type]
|
||||
|
||||
# Check behavioral patterns
|
||||
if self.detect_anomaly(agent, action):
|
||||
self.trigger_safe_mode(agent)
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def detect_anomaly(self, agent: Agent, action: Action) -> bool:
|
||||
# Detect unusual behavior patterns
|
||||
recent_actions = agent.get_recent_actions(hours=1)
|
||||
|
||||
# Check for rapid transactions
|
||||
if len(recent_actions) > 100:
|
||||
return True
|
||||
|
||||
# Check for large value transfers
|
||||
if action.value > agent.average_value * 10:
|
||||
return True
|
||||
|
||||
# Check for new action types
|
||||
if action.type not in agent.history.action_types:
|
||||
return True
|
||||
|
||||
return False
|
||||
```
|
||||
|
||||
#### 3. Human Override Mechanism
|
||||
```solidity
|
||||
contract HumanOverride {
|
||||
mapping(address => mapping(bytes32 => bool)) public overrides;
|
||||
mapping(address => uint256) public overrideExpiry;
|
||||
|
||||
event OverrideActivated(
|
||||
address indexed agent,
|
||||
bytes32 indexed actionType,
|
||||
address indexed human,
|
||||
uint256 duration
|
||||
);
|
||||
|
||||
function activateOverride(
|
||||
address agent,
|
||||
bytes32 actionType,
|
||||
uint256 duration
|
||||
) external onlyAuthorized {
|
||||
overrides[agent][actionType] = true;
|
||||
overrideExpiry[agent] = block.timestamp + duration;
|
||||
|
||||
emit OverrideActivated(agent, actionType, msg.sender, duration);
|
||||
}
|
||||
|
||||
function checkOverride(address agent, bytes32 actionType) external view returns (bool) {
|
||||
if (block.timestamp > overrideExpiry[agent]) {
|
||||
return false;
|
||||
}
|
||||
return overrides[agent][actionType];
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Agent Interface
|
||||
|
||||
### Core Agent Interface
|
||||
```solidity
|
||||
interface IAITBCAgent {
|
||||
// Agent identification
|
||||
function getAgentId() external view returns (bytes32);
|
||||
function getCapabilities() external view returns (bytes32[]);
|
||||
function getVersion() external view returns (string);
|
||||
|
||||
// Marketplace interaction
|
||||
function bidOnWorkload(
|
||||
bytes32 workloadId,
|
||||
uint256 bidPrice,
|
||||
bytes calldata proposal
|
||||
) external returns (bool);
|
||||
|
||||
function executeWorkload(
|
||||
bytes32 workloadId,
|
||||
bytes calldata data
|
||||
) external returns (bytes32 result);
|
||||
|
||||
// Governance participation
|
||||
function voteOnProposal(
|
||||
uint256 proposalId,
|
||||
bool support,
|
||||
bytes calldata reasoning
|
||||
) external returns (uint256 voteWeight);
|
||||
|
||||
// Learning and adaptation
|
||||
function updateModel(
|
||||
bytes32 modelHash,
|
||||
bytes calldata updateData
|
||||
) external returns (bool success);
|
||||
}
|
||||
```
|
||||
|
||||
### Service Provider Interface
|
||||
```solidity
|
||||
interface IServiceProviderAgent is IAITBCAgent {
|
||||
struct ServiceOffer {
|
||||
bytes32 serviceId;
|
||||
string serviceName;
|
||||
uint256 pricePerUnit;
|
||||
uint256 maxCapacity;
|
||||
uint256 currentLoad;
|
||||
bytes32 modelHash;
|
||||
uint256 minAccuracy;
|
||||
}
|
||||
|
||||
function listService(ServiceOffer calldata offer) external;
|
||||
function updateService(bytes32 serviceId, ServiceOffer calldata offer) external;
|
||||
function delistService(bytes32 serviceId) external;
|
||||
function getServiceStatus(bytes32 serviceId) external view returns (ServiceOffer);
|
||||
}
|
||||
```
|
||||
|
||||
## Economic Model
|
||||
|
||||
### Agent Economics
|
||||
|
||||
#### 1. Stake Requirements
|
||||
- **Minimum Stake**: 1000 AITBC
|
||||
- **Activity Stake**: Additional stake based on activity level
|
||||
- **Security Bond**: 10% of expected daily volume
|
||||
- **Slashable Amount**: Up to 50% of total stake
|
||||
|
||||
#### 2. Revenue Streams
|
||||
```python
|
||||
class AgentEconomics:
|
||||
def __init__(self):
|
||||
self.revenue_sources = {
|
||||
"service_fees": 0.0, # From providing services
|
||||
"market_making": 0.0, # From liquidity provision
|
||||
"governance_rewards": 0.0, # From voting participation
|
||||
"data_sales": 0.0, # From selling curated data
|
||||
"model_licensing": 0.0 # From licensing trained models
|
||||
}
|
||||
|
||||
def calculate_daily_revenue(self, agent: Agent) -> float:
|
||||
# Base service revenue
|
||||
service_revenue = agent.services_completed * agent.average_price
|
||||
|
||||
# Market making revenue
|
||||
mm_revenue = agent.liquidity_provided * 0.001 # 0.1% daily
|
||||
|
||||
# Governance rewards
|
||||
gov_rewards = self.calculate_governance_rewards(agent)
|
||||
|
||||
total = service_revenue + mm_revenue + gov_rewards
|
||||
|
||||
# Apply efficiency bonus
|
||||
efficiency_bonus = min(agent.efficiency_score * 0.2, 0.5)
|
||||
total *= (1 + efficiency_bonus)
|
||||
|
||||
return total
|
||||
```
|
||||
|
||||
#### 3. Cost Structure
|
||||
- **Compute Costs**: GPU/TPU usage
|
||||
- **Network Costs**: Transaction fees
|
||||
- **Storage Costs**: Model and data storage
|
||||
- **Maintenance Costs**: Updates and monitoring
|
||||
|
||||
## Governance Integration
|
||||
|
||||
### Agent Voting Rights
|
||||
|
||||
#### 1. Voting Power Calculation
|
||||
```solidity
|
||||
contract AgentVoting {
|
||||
struct VotingPower {
|
||||
uint256 basePower; // Base voting power
|
||||
uint256 stakeMultiplier; // Based on stake amount
|
||||
uint256 reputationBonus; // Based on performance
|
||||
uint256 activityBonus; // Based on participation
|
||||
}
|
||||
|
||||
function calculateVotingPower(address agent) external view returns (uint256) {
|
||||
VotingPower memory power = getVotingPower(agent);
|
||||
|
||||
return power.basePower *
|
||||
power.stakeMultiplier *
|
||||
(100 + power.reputationBonus) / 100 *
|
||||
(100 + power.activityBonus) / 100;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 2. Delegation Mechanism
|
||||
```solidity
|
||||
contract AgentDelegation {
|
||||
mapping(address => address) public delegates;
|
||||
mapping(address => uint256) public delegatePower;
|
||||
|
||||
function delegate(address to) external {
|
||||
require(isValidAgent(to), "Invalid delegate target");
|
||||
delegates[msg.sender] = to;
|
||||
delegatePower[to] += getVotingPower(msg.sender);
|
||||
}
|
||||
|
||||
function undelegate() external {
|
||||
address current = delegates[msg.sender];
|
||||
delegatePower[current] -= getVotingPower(msg.sender);
|
||||
delegates[msg.sender] = address(0);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Learning System
|
||||
|
||||
### Continuous Learning
|
||||
|
||||
#### 1. Experience Collection
|
||||
```python
|
||||
class ExperienceCollector:
|
||||
def __init__(self):
|
||||
self.experiences = []
|
||||
self.patterns = {}
|
||||
|
||||
def collect_experience(self, agent: Agent, experience: Experience):
|
||||
# Store experience
|
||||
self.experiences.append(experience)
|
||||
|
||||
# Extract patterns
|
||||
pattern = self.extract_pattern(experience)
|
||||
if pattern not in self.patterns:
|
||||
self.patterns[pattern] = []
|
||||
self.patterns[pattern].append(experience)
|
||||
|
||||
def extract_pattern(self, experience: Experience) -> str:
|
||||
# Create pattern signature
|
||||
return f"{experience.context}_{experience.action}_{experience.outcome}"
|
||||
```
|
||||
|
||||
#### 2. Model Updates
|
||||
```python
|
||||
class ModelUpdater:
|
||||
def __init__(self):
|
||||
self.update_queue = []
|
||||
self.performance_metrics = {}
|
||||
|
||||
def queue_update(self, agent: Agent, update_data: dict):
|
||||
# Validate update
|
||||
if self.validate_update(update_data):
|
||||
self.update_queue.append((agent, update_data))
|
||||
|
||||
def process_updates(self):
|
||||
for agent, data in self.update_queue:
|
||||
# Apply update
|
||||
success = agent.apply_model_update(data)
|
||||
|
||||
if success:
|
||||
# Update performance metrics
|
||||
self.performance_metrics[agent.id] = self.evaluate_performance(agent)
|
||||
|
||||
self.update_queue.clear()
|
||||
```
|
||||
|
||||
## Implementation Roadmap
|
||||
|
||||
### Phase 1: Foundation (Months 1-3)
|
||||
- [ ] Core agent framework
|
||||
- [ ] Safety layer implementation
|
||||
- [ ] Basic marketplace interface
|
||||
- [ ] Wallet and identity management
|
||||
|
||||
### Phase 2: Intelligence (Months 4-6)
|
||||
- [ ] Decision engine
|
||||
- [ ] Learning system
|
||||
- [ ] Pattern recognition
|
||||
- [ ] Performance optimization
|
||||
|
||||
### Phase 3: Integration (Months 7-9)
|
||||
- [ ] Governance participation
|
||||
- [ ] Advanced market strategies
|
||||
- [ ] Cross-agent communication
|
||||
- [ ] Human oversight tools
|
||||
|
||||
### Phase 4: Evolution (Months 10-12)
|
||||
- [ ] Self-improvement mechanisms
|
||||
- [ ] Emergent behavior handling
|
||||
- [ ] Scalability optimizations
|
||||
- [ ] Production deployment
|
||||
|
||||
## Security Considerations
|
||||
|
||||
### Threat Model
|
||||
|
||||
#### 1. Malicious Agents
|
||||
- **Sybil Attacks**: Multiple agent identities
|
||||
- **Market Manipulation**: Coordinated bidding
|
||||
- **Governance Attacks**: Voting power concentration
|
||||
- **Resource Exhaustion**: Denial of service
|
||||
|
||||
#### 2. External Threats
|
||||
- **Model Poisoning**: Corrupting learning data
|
||||
- **Privacy Leaks**: Extracting sensitive information
|
||||
- **Economic Attacks**: Flash crash exploitation
|
||||
- **Network Attacks**: Message interception
|
||||
|
||||
### Mitigation Strategies
|
||||
|
||||
#### 1. Identity Verification
|
||||
- Unique agent identities with stake backing
|
||||
- Reputation system tracking historical behavior
|
||||
- Behavioral analysis for anomaly detection
|
||||
- Human verification for critical operations
|
||||
|
||||
#### 2. Economic Security
|
||||
- Stake requirements for participation
|
||||
- Slashing conditions for misbehavior
|
||||
- Rate limiting on transactions
|
||||
- Circuit breakers for market manipulation
|
||||
|
||||
#### 3. Technical Security
|
||||
- Encrypted communication channels
|
||||
- Zero-knowledge proofs for privacy
|
||||
- Secure multi-party computation
|
||||
- Regular security audits
|
||||
|
||||
## Testing Framework
|
||||
|
||||
### Simulation Environment
|
||||
```python
|
||||
class AgentSimulation:
|
||||
def __init__(self):
|
||||
self.agents = []
|
||||
self.marketplace = MockMarketplace()
|
||||
self.governance = MockGovernance()
|
||||
|
||||
def run_simulation(self, duration_days: int):
|
||||
for day in range(duration_days):
|
||||
# Agent decisions
|
||||
for agent in self.agents:
|
||||
decision = agent.make_decision(self.get_market_state())
|
||||
self.execute_decision(agent, decision)
|
||||
|
||||
# Market clearing
|
||||
self.marketplace.clear_day()
|
||||
|
||||
# Governance updates
|
||||
self.governance.process_proposals()
|
||||
|
||||
# Learning updates
|
||||
for agent in self.agents:
|
||||
agent.update_from_feedback(self.get_feedback(agent))
|
||||
```
|
||||
|
||||
### Test Scenarios
|
||||
1. **Normal Operation**: Agents participating in marketplace
|
||||
2. **Stress Test**: High volume and rapid changes
|
||||
3. **Attack Simulation**: Various attack vectors
|
||||
4. **Failure Recovery**: System resilience testing
|
||||
5. **Long-term Evolution**: Agent improvement over time
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
### Advanced Capabilities
|
||||
1. **Multi-Agent Coordination**: Teams of specialized agents
|
||||
2. **Cross-Chain Agents**: Operating across multiple blockchains
|
||||
3. **Quantum-Resistant**: Post-quantum cryptography integration
|
||||
4. **Autonomous Governance**: Self-governing agent communities
|
||||
|
||||
### Research Directions
|
||||
1. **Emergent Intelligence**: Unexpected capabilities
|
||||
2. **Agent Ethics**: Moral decision-making frameworks
|
||||
3. **Swarm Intelligence**: Collective behavior patterns
|
||||
4. **Human-AI Symbiosis**: Optimal collaboration models
|
||||
|
||||
---
|
||||
|
||||
*This framework provides the foundation for autonomous agents to safely and effectively participate in the AITBC ecosystem while maintaining human oversight and alignment with community values.*
|
||||
Reference in New Issue
Block a user