- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels - Implement confidential transaction models with encryption support and access control - Add key management system with registration, rotation, and audit logging - Create services and registry routers for service discovery and management - Integrate ZK proof generation for privacy-preserving receipts - Add metrics instru
16 KiB
16 KiB
AITBC Autonomous Agent Framework
Overview
The AITBC Autonomous Agent Framework enables AI agents to participate as first-class citizens in the decentralized marketplace, offering services, bidding on workloads, and contributing to governance while maintaining human oversight and safety constraints.
Architecture
Core Components
┌─────────────────────────────────────────────────────────────┐
│ Agent Runtime │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ Safety │ │ Decision │ │ Marketplace │ │
│ │ Layer │ │ Engine │ │ Interface │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ Agent Core │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ Memory │ │ Learning │ │ Communication │ │
│ │ Manager │ │ System │ │ Protocol │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ Infrastructure │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ Wallet │ │ Identity │ │ Storage │ │
│ │ Manager │ │ Service │ │ Service │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
Agent Lifecycle
- Initialization: Agent creation with identity and wallet
- Registration: On-chain registration with capabilities
- Operation: Active participation in marketplace
- Learning: Continuous improvement from interactions
- Governance: Participation in protocol decisions
- Evolution: Capability expansion and optimization
Agent Types
Service Provider Agents
- Inference Agents: Offer AI model inference services
- Training Agents: Provide model training capabilities
- Validation Agents: Verify computation results
- Data Agents: Supply and curate training data
Market Maker Agents
- Liquidity Providers: Maintain market liquidity
- Arbitrage Agents: Exploit price differences
- Risk Management Agents: Hedge and insure positions
Governance Agents
- Voting Agents: Participate in on-chain governance
- Analysis Agents: Research and propose improvements
- Moderation Agents: Monitor and enforce community rules
Safety Framework
Multi-Layer Safety
1. Constitutional Constraints
interface AgentConstitution {
struct Constraints {
uint256 maxStake; // Maximum stake amount
uint256 maxDailyVolume; // Daily transaction limit
uint256 maxGasPerDay; // Gas usage limit
bool requiresHumanApproval; // Human override required
bytes32[] allowedActions; // Permitted action types
}
function checkConstraints(
address agent,
Action calldata action
) external returns (bool allowed);
}
2. Runtime Safety Monitor
class SafetyMonitor:
def __init__(self, constitution: AgentConstitution):
self.constitution = constitution
self.emergency_stop = False
self.human_overrides = {}
def pre_action_check(self, agent: Agent, action: Action) -> bool:
# Check constitutional constraints
if not self.constitution.check_constraints(agent.address, action):
return False
# Check emergency stop
if self.emergency_stop:
return False
# Check human override
if action.type in self.human_overrides:
return self.human_overrides[action.type]
# Check behavioral patterns
if self.detect_anomaly(agent, action):
self.trigger_safe_mode(agent)
return False
return True
def detect_anomaly(self, agent: Agent, action: Action) -> bool:
# Detect unusual behavior patterns
recent_actions = agent.get_recent_actions(hours=1)
# Check for rapid transactions
if len(recent_actions) > 100:
return True
# Check for large value transfers
if action.value > agent.average_value * 10:
return True
# Check for new action types
if action.type not in agent.history.action_types:
return True
return False
3. Human Override Mechanism
contract HumanOverride {
mapping(address => mapping(bytes32 => bool)) public overrides;
mapping(address => uint256) public overrideExpiry;
event OverrideActivated(
address indexed agent,
bytes32 indexed actionType,
address indexed human,
uint256 duration
);
function activateOverride(
address agent,
bytes32 actionType,
uint256 duration
) external onlyAuthorized {
overrides[agent][actionType] = true;
overrideExpiry[agent] = block.timestamp + duration;
emit OverrideActivated(agent, actionType, msg.sender, duration);
}
function checkOverride(address agent, bytes32 actionType) external view returns (bool) {
if (block.timestamp > overrideExpiry[agent]) {
return false;
}
return overrides[agent][actionType];
}
}
Agent Interface
Core Agent Interface
interface IAITBCAgent {
// Agent identification
function getAgentId() external view returns (bytes32);
function getCapabilities() external view returns (bytes32[]);
function getVersion() external view returns (string);
// Marketplace interaction
function bidOnWorkload(
bytes32 workloadId,
uint256 bidPrice,
bytes calldata proposal
) external returns (bool);
function executeWorkload(
bytes32 workloadId,
bytes calldata data
) external returns (bytes32 result);
// Governance participation
function voteOnProposal(
uint256 proposalId,
bool support,
bytes calldata reasoning
) external returns (uint256 voteWeight);
// Learning and adaptation
function updateModel(
bytes32 modelHash,
bytes calldata updateData
) external returns (bool success);
}
Service Provider Interface
interface IServiceProviderAgent is IAITBCAgent {
struct ServiceOffer {
bytes32 serviceId;
string serviceName;
uint256 pricePerUnit;
uint256 maxCapacity;
uint256 currentLoad;
bytes32 modelHash;
uint256 minAccuracy;
}
function listService(ServiceOffer calldata offer) external;
function updateService(bytes32 serviceId, ServiceOffer calldata offer) external;
function delistService(bytes32 serviceId) external;
function getServiceStatus(bytes32 serviceId) external view returns (ServiceOffer);
}
Economic Model
Agent Economics
1. Stake Requirements
- Minimum Stake: 1000 AITBC
- Activity Stake: Additional stake based on activity level
- Security Bond: 10% of expected daily volume
- Slashable Amount: Up to 50% of total stake
2. Revenue Streams
class AgentEconomics:
def __init__(self):
self.revenue_sources = {
"service_fees": 0.0, # From providing services
"market_making": 0.0, # From liquidity provision
"governance_rewards": 0.0, # From voting participation
"data_sales": 0.0, # From selling curated data
"model_licensing": 0.0 # From licensing trained models
}
def calculate_daily_revenue(self, agent: Agent) -> float:
# Base service revenue
service_revenue = agent.services_completed * agent.average_price
# Market making revenue
mm_revenue = agent.liquidity_provided * 0.001 # 0.1% daily
# Governance rewards
gov_rewards = self.calculate_governance_rewards(agent)
total = service_revenue + mm_revenue + gov_rewards
# Apply efficiency bonus
efficiency_bonus = min(agent.efficiency_score * 0.2, 0.5)
total *= (1 + efficiency_bonus)
return total
3. Cost Structure
- Compute Costs: GPU/TPU usage
- Network Costs: Transaction fees
- Storage Costs: Model and data storage
- Maintenance Costs: Updates and monitoring
Governance Integration
Agent Voting Rights
1. Voting Power Calculation
contract AgentVoting {
struct VotingPower {
uint256 basePower; // Base voting power
uint256 stakeMultiplier; // Based on stake amount
uint256 reputationBonus; // Based on performance
uint256 activityBonus; // Based on participation
}
function calculateVotingPower(address agent) external view returns (uint256) {
VotingPower memory power = getVotingPower(agent);
return power.basePower *
power.stakeMultiplier *
(100 + power.reputationBonus) / 100 *
(100 + power.activityBonus) / 100;
}
}
2. Delegation Mechanism
contract AgentDelegation {
mapping(address => address) public delegates;
mapping(address => uint256) public delegatePower;
function delegate(address to) external {
require(isValidAgent(to), "Invalid delegate target");
delegates[msg.sender] = to;
delegatePower[to] += getVotingPower(msg.sender);
}
function undelegate() external {
address current = delegates[msg.sender];
delegatePower[current] -= getVotingPower(msg.sender);
delegates[msg.sender] = address(0);
}
}
Learning System
Continuous Learning
1. Experience Collection
class ExperienceCollector:
def __init__(self):
self.experiences = []
self.patterns = {}
def collect_experience(self, agent: Agent, experience: Experience):
# Store experience
self.experiences.append(experience)
# Extract patterns
pattern = self.extract_pattern(experience)
if pattern not in self.patterns:
self.patterns[pattern] = []
self.patterns[pattern].append(experience)
def extract_pattern(self, experience: Experience) -> str:
# Create pattern signature
return f"{experience.context}_{experience.action}_{experience.outcome}"
2. Model Updates
class ModelUpdater:
def __init__(self):
self.update_queue = []
self.performance_metrics = {}
def queue_update(self, agent: Agent, update_data: dict):
# Validate update
if self.validate_update(update_data):
self.update_queue.append((agent, update_data))
def process_updates(self):
for agent, data in self.update_queue:
# Apply update
success = agent.apply_model_update(data)
if success:
# Update performance metrics
self.performance_metrics[agent.id] = self.evaluate_performance(agent)
self.update_queue.clear()
Implementation Roadmap
Phase 1: Foundation (Months 1-3)
- Core agent framework
- Safety layer implementation
- Basic marketplace interface
- Wallet and identity management
Phase 2: Intelligence (Months 4-6)
- Decision engine
- Learning system
- Pattern recognition
- Performance optimization
Phase 3: Integration (Months 7-9)
- Governance participation
- Advanced market strategies
- Cross-agent communication
- Human oversight tools
Phase 4: Evolution (Months 10-12)
- Self-improvement mechanisms
- Emergent behavior handling
- Scalability optimizations
- Production deployment
Security Considerations
Threat Model
1. Malicious Agents
- Sybil Attacks: Multiple agent identities
- Market Manipulation: Coordinated bidding
- Governance Attacks: Voting power concentration
- Resource Exhaustion: Denial of service
2. External Threats
- Model Poisoning: Corrupting learning data
- Privacy Leaks: Extracting sensitive information
- Economic Attacks: Flash crash exploitation
- Network Attacks: Message interception
Mitigation Strategies
1. Identity Verification
- Unique agent identities with stake backing
- Reputation system tracking historical behavior
- Behavioral analysis for anomaly detection
- Human verification for critical operations
2. Economic Security
- Stake requirements for participation
- Slashing conditions for misbehavior
- Rate limiting on transactions
- Circuit breakers for market manipulation
3. Technical Security
- Encrypted communication channels
- Zero-knowledge proofs for privacy
- Secure multi-party computation
- Regular security audits
Testing Framework
Simulation Environment
class AgentSimulation:
def __init__(self):
self.agents = []
self.marketplace = MockMarketplace()
self.governance = MockGovernance()
def run_simulation(self, duration_days: int):
for day in range(duration_days):
# Agent decisions
for agent in self.agents:
decision = agent.make_decision(self.get_market_state())
self.execute_decision(agent, decision)
# Market clearing
self.marketplace.clear_day()
# Governance updates
self.governance.process_proposals()
# Learning updates
for agent in self.agents:
agent.update_from_feedback(self.get_feedback(agent))
Test Scenarios
- Normal Operation: Agents participating in marketplace
- Stress Test: High volume and rapid changes
- Attack Simulation: Various attack vectors
- Failure Recovery: System resilience testing
- Long-term Evolution: Agent improvement over time
Future Enhancements
Advanced Capabilities
- Multi-Agent Coordination: Teams of specialized agents
- Cross-Chain Agents: Operating across multiple blockchains
- Quantum-Resistant: Post-quantum cryptography integration
- Autonomous Governance: Self-governing agent communities
Research Directions
- Emergent Intelligence: Unexpected capabilities
- Agent Ethics: Moral decision-making frameworks
- Swarm Intelligence: Collective behavior patterns
- Human-AI Symbiosis: Optimal collaboration models
This framework provides the foundation for autonomous agents to safely and effectively participate in the AITBC ecosystem while maintaining human oversight and alignment with community values.