feat: add marketplace metrics, privacy features, and service registry endpoints
- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels - Implement confidential transaction models with encryption support and access control - Add key management system with registration, rotation, and audit logging - Create services and registry routers for service discovery and management - Integrate ZK proof generation for privacy-preserving receipts - Add metrics instru
This commit is contained in:
477
research/consortium/scaling_research_plan.md
Normal file
477
research/consortium/scaling_research_plan.md
Normal file
@ -0,0 +1,477 @@
|
||||
# Blockchain Scaling Research Plan
|
||||
|
||||
## Executive Summary
|
||||
|
||||
This research plan addresses blockchain scalability through sharding and rollup architectures, targeting throughput of 100,000+ TPS while maintaining decentralization and security. The research focuses on practical implementations suitable for AI/ML workloads, including state sharding for large model storage, ZK-rollups for privacy-preserving computations, and hybrid rollup strategies optimized for decentralized marketplaces.
|
||||
|
||||
## Research Objectives
|
||||
|
||||
### Primary Objectives
|
||||
1. **Achieve 100,000+ TPS** through horizontal scaling
|
||||
2. **Support AI workloads** with efficient state management
|
||||
3. **Maintain security** across sharded architecture
|
||||
4. **Enable cross-shard communication** with minimal overhead
|
||||
5. **Implement dynamic sharding** based on network demand
|
||||
|
||||
### Secondary Objectives
|
||||
1. **Optimize for large data** (model weights, datasets)
|
||||
2. **Support complex computations** (AI inference, training)
|
||||
3. **Ensure interoperability** with existing chains
|
||||
4. **Minimize validator requirements** for broader participation
|
||||
5. **Provide developer-friendly abstractions**
|
||||
|
||||
## Technical Architecture
|
||||
|
||||
### Sharding Architecture
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Beacon Chain │
|
||||
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
|
||||
│ │ Random │ │ Cross-Shard │ │ State Management │ │
|
||||
│ │ Sampling │ │ Messaging │ │ Coordinator │ │
|
||||
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
|
||||
└─────────────────┬───────────────────────────────────────────┘
|
||||
│
|
||||
┌─────────────┴─────────────┐
|
||||
│ Shard Chains │
|
||||
│ ┌─────┐ ┌─────┐ ┌─────┐ │
|
||||
│ │ S0 │ │ S1 │ │ S2 │ │
|
||||
│ │ │ │ │ │ │ │
|
||||
│ │ AI │ │ DeFi│ │ NFT │ │
|
||||
│ └─────┘ └─────┘ └─────┘ │
|
||||
└───────────────────────────┘
|
||||
```
|
||||
|
||||
### Rollup Stack
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Layer 1 (Base) │
|
||||
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
|
||||
│ │ State │ │ Data │ │ Execution │ │
|
||||
│ Roots │ │ Availability │ │ Environment │ │
|
||||
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
|
||||
└─────────────────┬───────────────────────────────────────────┘
|
||||
│
|
||||
┌─────────────┴─────────────┐
|
||||
│ Layer 2 Rollups │
|
||||
│ ┌─────────┐ ┌─────────┐ │
|
||||
│ │ ZK-Rollup│ │Optimistic│ │
|
||||
│ │ │ │ Rollup │ │
|
||||
│ │ Privacy │ │ Speed │ │
|
||||
│ └─────────┘ └─────────┘ │
|
||||
└───────────────────────────┘
|
||||
```
|
||||
|
||||
## Research Methodology
|
||||
|
||||
### Phase 1: Architecture Design (Months 1-2)
|
||||
|
||||
#### 1.1 Sharding Design
|
||||
- **State Sharding**: Partition state across shards
|
||||
- **Transaction Sharding**: Route transactions to appropriate shards
|
||||
- **Cross-Shard Communication**: Efficient message passing
|
||||
- **Validator Assignment**: Random sampling with stake weighting
|
||||
|
||||
#### 1.2 Rollup Design
|
||||
- **ZK-Rollup**: Privacy-preserving computations
|
||||
- **Optimistic Rollup**: High throughput for simple operations
|
||||
- **Hybrid Approach**: Dynamic selection based on operation type
|
||||
- **Data Availability**: Ensuring data accessibility
|
||||
|
||||
#### 1.3 Integration Design
|
||||
- **Unified Interface**: Seamless interaction between shards and rollups
|
||||
- **State Synchronization**: Consistent state across layers
|
||||
- **Security Model**: Shared security across all components
|
||||
- **Developer SDK**: Abstractions for easy development
|
||||
|
||||
### Phase 2: Protocol Specification (Months 3-4)
|
||||
|
||||
#### 2.1 Sharding Protocol
|
||||
```python
|
||||
class ShardingProtocol:
|
||||
def __init__(self, num_shards: int, beacon_chain: BeaconChain):
|
||||
self.num_shards = num_shards
|
||||
self.beacon_chain = beacon_chain
|
||||
self.shard_managers = [ShardManager(i) for i in range(num_shards)]
|
||||
|
||||
def route_transaction(self, tx: Transaction) -> ShardId:
|
||||
"""Route transaction to appropriate shard"""
|
||||
if tx.is_cross_shard():
|
||||
return self.beacon_chain.handle_cross_shard(tx)
|
||||
else:
|
||||
shard_id = self.calculate_shard_id(tx)
|
||||
return self.shard_managers[shard_id].submit_transaction(tx)
|
||||
|
||||
def calculate_shard_id(self, tx: Transaction) -> int:
|
||||
"""Calculate target shard for transaction"""
|
||||
# Use transaction hash for deterministic routing
|
||||
return int(hash(tx.hash) % self.num_shards)
|
||||
|
||||
async def execute_cross_shard_tx(self, tx: CrossShardTransaction):
|
||||
"""Execute cross-shard transaction"""
|
||||
# Lock accounts on all involved shards
|
||||
locks = await self.acquire_cross_shard_locks(tx.involved_shards)
|
||||
|
||||
try:
|
||||
# Execute transaction atomically
|
||||
results = []
|
||||
for shard_id in tx.involved_shards:
|
||||
result = await self.shard_managers[shard_id].execute(tx)
|
||||
results.append(result)
|
||||
|
||||
# Commit if all executions succeed
|
||||
await self.commit_cross_shard_tx(tx, results)
|
||||
except Exception as e:
|
||||
# Rollback on failure
|
||||
await self.rollback_cross_shard_tx(tx)
|
||||
raise e
|
||||
finally:
|
||||
# Release locks
|
||||
await self.release_cross_shard_locks(locks)
|
||||
```
|
||||
|
||||
#### 2.2 Rollup Protocol
|
||||
```python
|
||||
class RollupProtocol:
|
||||
def __init__(self, layer1: Layer1, rollup_type: RollupType):
|
||||
self.layer1 = layer1
|
||||
self.rollup_type = rollup_type
|
||||
self.state = RollupState()
|
||||
|
||||
async def submit_batch(self, batch: TransactionBatch):
|
||||
"""Submit batch of transactions to Layer 1"""
|
||||
if self.rollup_type == RollupType.ZK:
|
||||
# Generate ZK proof for batch
|
||||
proof = await self.generate_zk_proof(batch)
|
||||
await self.layer1.submit_zk_batch(batch, proof)
|
||||
else:
|
||||
# Submit optimistic batch
|
||||
await self.layer1.submit_optimistic_batch(batch)
|
||||
|
||||
async def generate_zk_proof(self, batch: TransactionBatch) -> ZKProof:
|
||||
"""Generate zero-knowledge proof for batch"""
|
||||
# Create computation circuit
|
||||
circuit = self.create_batch_circuit(batch)
|
||||
|
||||
# Generate witness
|
||||
witness = self.generate_witness(batch, self.state)
|
||||
|
||||
# Generate proof
|
||||
proving_key = await self.load_proving_key()
|
||||
proof = await zk_prove(circuit, witness, proving_key)
|
||||
|
||||
return proof
|
||||
|
||||
async def verify_batch(self, batch: TransactionBatch, proof: ZKProof) -> bool:
|
||||
"""Verify batch validity"""
|
||||
if self.rollup_type == RollupType.ZK:
|
||||
# Verify ZK proof
|
||||
circuit = self.create_batch_circuit(batch)
|
||||
verification_key = await self.load_verification_key()
|
||||
return await zk_verify(circuit, proof, verification_key)
|
||||
else:
|
||||
# Optimistic rollup - assume valid unless challenged
|
||||
return True
|
||||
```
|
||||
|
||||
#### 2.3 AI-Specific Optimizations
|
||||
```python
|
||||
class AIShardManager(ShardManager):
|
||||
def __init__(self, shard_id: int, specialization: AISpecialization):
|
||||
super().__init__(shard_id)
|
||||
self.specialization = specialization
|
||||
self.model_cache = ModelCache()
|
||||
self.compute_pool = ComputePool()
|
||||
|
||||
async def execute_inference(self, inference_tx: InferenceTransaction):
|
||||
"""Execute AI inference transaction"""
|
||||
# Load model from cache or storage
|
||||
model = await self.model_cache.get(inference_tx.model_id)
|
||||
|
||||
# Allocate compute resources
|
||||
compute_node = await self.compute_pool.allocate(
|
||||
inference_tx.compute_requirements
|
||||
)
|
||||
|
||||
try:
|
||||
# Execute inference
|
||||
result = await compute_node.run_inference(
|
||||
model, inference_tx.input_data
|
||||
)
|
||||
|
||||
# Verify result with ZK proof
|
||||
proof = await self.generate_inference_proof(
|
||||
model, inference_tx.input_data, result
|
||||
)
|
||||
|
||||
# Update state
|
||||
await self.update_inference_state(inference_tx, result, proof)
|
||||
|
||||
return result
|
||||
finally:
|
||||
# Release compute resources
|
||||
await self.compute_pool.release(compute_node)
|
||||
|
||||
async def store_model(self, model_tx: ModelStorageTransaction):
|
||||
"""Store AI model on shard"""
|
||||
# Compress model for storage
|
||||
compressed_model = await self.compress_model(model_tx.model)
|
||||
|
||||
# Split across multiple shards if large
|
||||
if len(compressed_model) > self.shard_capacity:
|
||||
shards = await self.split_model(compressed_model)
|
||||
for i, shard_data in enumerate(shards):
|
||||
await self.store_model_shard(model_tx.model_id, i, shard_data)
|
||||
else:
|
||||
await self.store_model_single(model_tx.model_id, compressed_model)
|
||||
|
||||
# Update model registry
|
||||
await self.update_model_registry(model_tx)
|
||||
```
|
||||
|
||||
### Phase 3: Implementation (Months 5-6)
|
||||
|
||||
#### 3.1 Core Components
|
||||
- **Beacon Chain**: Coordination and randomness
|
||||
- **Shard Chains**: Individual shard implementations
|
||||
- **Rollup Contracts**: Layer 1 integration contracts
|
||||
- **Cross-Shard Messaging**: Communication protocol
|
||||
- **State Manager**: State synchronization
|
||||
|
||||
#### 3.2 AI/ML Components
|
||||
- **Model Storage**: Efficient large model storage
|
||||
- **Inference Engine**: On-chain inference execution
|
||||
- **Data Pipeline**: Training data handling
|
||||
- **Result Verification**: ZK proofs for computations
|
||||
|
||||
#### 3.3 Developer Tools
|
||||
- **SDK**: Multi-language development kit
|
||||
- **Testing Framework**: Shard-aware testing
|
||||
- **Deployment Tools**: Automated deployment
|
||||
- **Monitoring**: Cross-shard observability
|
||||
|
||||
### Phase 4: Testing & Optimization (Months 7-8)
|
||||
|
||||
#### 4.1 Performance Testing
|
||||
- **Throughput**: Measure TPS per shard and total
|
||||
- **Latency**: Cross-shard transaction latency
|
||||
- **Scalability**: Performance with increasing shards
|
||||
- **Resource Usage**: Validator requirements
|
||||
|
||||
#### 4.2 Security Testing
|
||||
- **Attack Scenarios**: Various attack vectors
|
||||
- **Fault Tolerance**: Shard failure handling
|
||||
- **State Consistency**: Cross-shard state consistency
|
||||
- **Privacy**: ZK proof security
|
||||
|
||||
#### 4.3 AI Workload Testing
|
||||
- **Model Storage**: Large model storage efficiency
|
||||
- **Inference Performance**: On-chain inference speed
|
||||
- **Data Throughput**: Training data handling
|
||||
- **Cost Analysis**: Gas optimization
|
||||
|
||||
## Technical Specifications
|
||||
|
||||
### Sharding Parameters
|
||||
|
||||
| Parameter | Value | Description |
|
||||
|-----------|-------|-------------|
|
||||
| Number of Shards | 64-1024 | Dynamically adjustable |
|
||||
| Shard Size | 100-500 MB | State per shard |
|
||||
| Cross-Shard Latency | <500ms | Message passing |
|
||||
| Validator per Shard | 100-1000 | Randomly sampled |
|
||||
| Shard Block Time | 500ms | Individual shard |
|
||||
|
||||
### Rollup Parameters
|
||||
|
||||
| Parameter | ZK-Rollup | Optimistic |
|
||||
|-----------|-----------|------------|
|
||||
| TPS | 20,000 | 50,000 |
|
||||
| Finality | 10 minutes | 1 week |
|
||||
| Gas per TX | 500-2000 | 100-500 |
|
||||
| Data Availability | On-chain | Off-chain |
|
||||
| Privacy | Full | None |
|
||||
|
||||
### AI-Specific Parameters
|
||||
|
||||
| Parameter | Value | Description |
|
||||
|-----------|-------|-------------|
|
||||
| Max Model Size | 10GB | Per model |
|
||||
| Inference Time | <5s | Per inference |
|
||||
| Parallelism | 1000 | Concurrent inferences |
|
||||
| Proof Generation | 30s | ZK proof time |
|
||||
| Storage Cost | $0.01/GB/month | Model storage |
|
||||
|
||||
## Security Analysis
|
||||
|
||||
### Sharding Security
|
||||
|
||||
#### 1. Single-Shard Takeover
|
||||
- **Attack**: Control majority of validators in one shard
|
||||
- **Defense**: Random validator assignment, stake requirements
|
||||
- **Detection**: Beacon chain monitoring, slash conditions
|
||||
|
||||
#### 2. Cross-Shard Replay
|
||||
- **Attack**: Replay transaction across shards
|
||||
- **Defense**: Nonce management, shard-specific signatures
|
||||
- **Detection**: Transaction deduplication
|
||||
|
||||
#### 3. State Corruption
|
||||
- **Attack**: Corrupt state in one shard
|
||||
- **Defense**: State roots, fraud proofs
|
||||
- **Detection**: Merkle proof verification
|
||||
|
||||
### Rollup Security
|
||||
|
||||
#### 1. Invalid State Transition
|
||||
- **Attack**: Submit invalid batch to Layer 1
|
||||
- **Defense**: ZK proofs, fraud proofs
|
||||
- **Detection**: Challenge period, verification
|
||||
|
||||
#### 2. Data Withholding
|
||||
- **Attack**: Withhold transaction data
|
||||
- **Defense**: Data availability proofs
|
||||
- **Detection**: Availability checks
|
||||
|
||||
#### 3. Exit Scams
|
||||
- **Attack**: Operator steals funds
|
||||
- **Defense**: Withdrawal delays, guardians
|
||||
- **Detection**: Watchtower monitoring
|
||||
|
||||
## Implementation Plan
|
||||
|
||||
### Phase 1: Foundation (Months 1-2)
|
||||
- [ ] Complete architecture design
|
||||
- [ ] Specify protocols and interfaces
|
||||
- [ ] Create development environment
|
||||
- [ ] Set up test infrastructure
|
||||
|
||||
### Phase 2: Core Development (Months 3-4)
|
||||
- [ ] Implement beacon chain
|
||||
- [ ] Develop shard chains
|
||||
- [ ] Create rollup contracts
|
||||
- [ ] Build cross-shard messaging
|
||||
|
||||
### Phase 3: AI Integration (Months 5-6)
|
||||
- [ ] Implement model storage
|
||||
- [ ] Build inference engine
|
||||
- [ ] Create ZK proof circuits
|
||||
- [ ] Optimize gas usage
|
||||
|
||||
### Phase 4: Testing (Months 7-8)
|
||||
- [ ] Performance benchmarking
|
||||
- [ ] Security audits
|
||||
- [ ] AI workload testing
|
||||
- [ ] Community testing
|
||||
|
||||
### Phase 5: Deployment (Months 9-12)
|
||||
- [ ] Testnet deployment
|
||||
- [ ] Mainnet preparation
|
||||
- [ ] Developer onboarding
|
||||
- [ ] Documentation
|
||||
|
||||
## Deliverables
|
||||
|
||||
### Technical Deliverables
|
||||
1. **Sharding Protocol Specification** (Month 2)
|
||||
2. **Rollup Implementation** (Month 4)
|
||||
3. **AI/ML Integration Layer** (Month 6)
|
||||
4. **Performance Benchmarks** (Month 8)
|
||||
5. **Mainnet Deployment** (Month 12)
|
||||
|
||||
### Research Deliverables
|
||||
1. **Conference Papers**: 2 papers on sharding and rollups
|
||||
2. **Technical Reports**: Quarterly progress reports
|
||||
3. **Open Source**: All code under permissive license
|
||||
4. **Standards**: Proposals for industry standards
|
||||
|
||||
### Community Deliverables
|
||||
1. **Developer Documentation**: Comprehensive guides
|
||||
2. **Tutorials**: AI/ML on blockchain examples
|
||||
3. **Tools**: SDK and development tools
|
||||
4. **Support**: Community support channels
|
||||
|
||||
## Resource Requirements
|
||||
|
||||
### Team
|
||||
- **Principal Investigator** (1): Scaling and distributed systems
|
||||
- **Protocol Engineers** (3): Core protocol implementation
|
||||
- **AI/ML Engineers** (2): AI-specific optimizations
|
||||
- **Cryptography Engineers** (2): ZK proofs and security
|
||||
- **Security Researchers** (2): Security analysis and audits
|
||||
- **DevOps Engineers** (1): Infrastructure and deployment
|
||||
|
||||
### Infrastructure
|
||||
- **Development Cluster**: 64 nodes for sharding tests
|
||||
- **AI Compute**: GPU cluster for model testing
|
||||
- **Storage**: 1PB for model storage tests
|
||||
- **Network**: High-bandwidth for cross-shard testing
|
||||
|
||||
### Budget
|
||||
- **Personnel**: $6M
|
||||
- **Infrastructure**: $2M
|
||||
- **Security Audits**: $1M
|
||||
- **Community**: $1M
|
||||
|
||||
## Success Metrics
|
||||
|
||||
### Technical Metrics
|
||||
- [ ] Achieve 100,000+ TPS total throughput
|
||||
- [ ] Maintain <1s cross-shard latency
|
||||
- [ ] Support 10GB+ model storage
|
||||
- [ ] Handle 1,000+ concurrent inferences
|
||||
- [ ] Pass 3 security audits
|
||||
|
||||
### Adoption Metrics
|
||||
- [ ] 100+ DApps deployed on sharded network
|
||||
- [ ] 10+ AI models running on-chain
|
||||
- [ ] 1,000+ active developers
|
||||
- [ ] 50,000+ daily active users
|
||||
- [ ] 5+ enterprise partnerships
|
||||
|
||||
### Research Metrics
|
||||
- [ ] 2+ papers accepted at top conferences
|
||||
- [ ] 3+ patents filed
|
||||
- [ ] 10+ academic collaborations
|
||||
- [ ] Open source project with 5,000+ stars
|
||||
- [ ] Industry recognition
|
||||
|
||||
## Risk Mitigation
|
||||
|
||||
### Technical Risks
|
||||
1. **Complexity**: Sharding adds significant complexity
|
||||
- Mitigation: Incremental development, extensive testing
|
||||
2. **State Bloat**: Large AI models increase state size
|
||||
- Mitigation: Compression, pruning, archival nodes
|
||||
3. **Cross-Shard Overhead**: Communication may be expensive
|
||||
- Mitigation: Batch operations, efficient routing
|
||||
|
||||
### Security Risks
|
||||
1. **Shard Isolation**: Security issues in one shard
|
||||
- Mitigation: Shared security, monitoring
|
||||
2. **Centralization**: Large validators may dominate
|
||||
- Mitigation: Stake limits, random assignment
|
||||
3. **ZK Proof Risks**: Cryptographic vulnerabilities
|
||||
- Mitigation: Multiple implementations, audits
|
||||
|
||||
### Adoption Risks
|
||||
1. **Developer Complexity**: Harder to develop for sharded chain
|
||||
- Mitigation: Abstractions, SDK, documentation
|
||||
2. **Migration Difficulty**: Hard to move from monolithic
|
||||
- Mitigation: Migration tools, backward compatibility
|
||||
3. **Competition**: Other scaling solutions
|
||||
- Mitigation: AI-specific optimizations, partnerships
|
||||
|
||||
## Conclusion
|
||||
|
||||
This research plan presents a comprehensive approach to blockchain scaling through sharding and rollups, specifically optimized for AI/ML workloads. The combination of horizontal scaling through sharding and computation efficiency through rollups provides a path to 100,000+ TPS while maintaining security and decentralization.
|
||||
|
||||
The focus on AI-specific optimizations, including efficient model storage, on-chain inference, and privacy-preserving computations, positions AITBC as the leading platform for decentralized AI applications.
|
||||
|
||||
The 12-month timeline with clear milestones and deliverables ensures steady progress toward production-ready implementation. The research outcomes will not only benefit AITBC but contribute to the broader blockchain ecosystem.
|
||||
|
||||
---
|
||||
|
||||
*This research plan will evolve as we learn from implementation and community feedback. Regular reviews and updates ensure the research remains aligned with ecosystem needs.*
|
||||
Reference in New Issue
Block a user