feat: add marketplace metrics, privacy features, and service registry endpoints

- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels
- Implement confidential transaction models with encryption support and access control
- Add key management system with registration, rotation, and audit logging
- Create services and registry routers for service discovery and management
- Integrate ZK proof generation for privacy-preserving receipts
- Add metrics instru
This commit is contained in:
oib
2025-12-22 10:33:23 +01:00
parent d98b2c7772
commit c8be9d7414
260 changed files with 59033 additions and 351 deletions

View File

@ -0,0 +1,477 @@
# Blockchain Scaling Research Plan
## Executive Summary
This research plan addresses blockchain scalability through sharding and rollup architectures, targeting throughput of 100,000+ TPS while maintaining decentralization and security. The research focuses on practical implementations suitable for AI/ML workloads, including state sharding for large model storage, ZK-rollups for privacy-preserving computations, and hybrid rollup strategies optimized for decentralized marketplaces.
## Research Objectives
### Primary Objectives
1. **Achieve 100,000+ TPS** through horizontal scaling
2. **Support AI workloads** with efficient state management
3. **Maintain security** across sharded architecture
4. **Enable cross-shard communication** with minimal overhead
5. **Implement dynamic sharding** based on network demand
### Secondary Objectives
1. **Optimize for large data** (model weights, datasets)
2. **Support complex computations** (AI inference, training)
3. **Ensure interoperability** with existing chains
4. **Minimize validator requirements** for broader participation
5. **Provide developer-friendly abstractions**
## Technical Architecture
### Sharding Architecture
```
┌─────────────────────────────────────────────────────────────┐
│ Beacon Chain │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ Random │ │ Cross-Shard │ │ State Management │ │
│ │ Sampling │ │ Messaging │ │ Coordinator │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
└─────────────────┬───────────────────────────────────────────┘
┌─────────────┴─────────────┐
│ Shard Chains │
│ ┌─────┐ ┌─────┐ ┌─────┐ │
│ │ S0 │ │ S1 │ │ S2 │ │
│ │ │ │ │ │ │ │
│ │ AI │ │ DeFi│ │ NFT │ │
│ └─────┘ └─────┘ └─────┘ │
└───────────────────────────┘
```
### Rollup Stack
```
┌─────────────────────────────────────────────────────────────┐
│ Layer 1 (Base) │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ State │ │ Data │ │ Execution │ │
│ Roots │ │ Availability │ │ Environment │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
└─────────────────┬───────────────────────────────────────────┘
┌─────────────┴─────────────┐
│ Layer 2 Rollups │
│ ┌─────────┐ ┌─────────┐ │
│ │ ZK-Rollup│ │Optimistic│ │
│ │ │ │ Rollup │ │
│ │ Privacy │ │ Speed │ │
│ └─────────┘ └─────────┘ │
└───────────────────────────┘
```
## Research Methodology
### Phase 1: Architecture Design (Months 1-2)
#### 1.1 Sharding Design
- **State Sharding**: Partition state across shards
- **Transaction Sharding**: Route transactions to appropriate shards
- **Cross-Shard Communication**: Efficient message passing
- **Validator Assignment**: Random sampling with stake weighting
#### 1.2 Rollup Design
- **ZK-Rollup**: Privacy-preserving computations
- **Optimistic Rollup**: High throughput for simple operations
- **Hybrid Approach**: Dynamic selection based on operation type
- **Data Availability**: Ensuring data accessibility
#### 1.3 Integration Design
- **Unified Interface**: Seamless interaction between shards and rollups
- **State Synchronization**: Consistent state across layers
- **Security Model**: Shared security across all components
- **Developer SDK**: Abstractions for easy development
### Phase 2: Protocol Specification (Months 3-4)
#### 2.1 Sharding Protocol
```python
class ShardingProtocol:
def __init__(self, num_shards: int, beacon_chain: BeaconChain):
self.num_shards = num_shards
self.beacon_chain = beacon_chain
self.shard_managers = [ShardManager(i) for i in range(num_shards)]
def route_transaction(self, tx: Transaction) -> ShardId:
"""Route transaction to appropriate shard"""
if tx.is_cross_shard():
return self.beacon_chain.handle_cross_shard(tx)
else:
shard_id = self.calculate_shard_id(tx)
return self.shard_managers[shard_id].submit_transaction(tx)
def calculate_shard_id(self, tx: Transaction) -> int:
"""Calculate target shard for transaction"""
# Use transaction hash for deterministic routing
return int(hash(tx.hash) % self.num_shards)
async def execute_cross_shard_tx(self, tx: CrossShardTransaction):
"""Execute cross-shard transaction"""
# Lock accounts on all involved shards
locks = await self.acquire_cross_shard_locks(tx.involved_shards)
try:
# Execute transaction atomically
results = []
for shard_id in tx.involved_shards:
result = await self.shard_managers[shard_id].execute(tx)
results.append(result)
# Commit if all executions succeed
await self.commit_cross_shard_tx(tx, results)
except Exception as e:
# Rollback on failure
await self.rollback_cross_shard_tx(tx)
raise e
finally:
# Release locks
await self.release_cross_shard_locks(locks)
```
#### 2.2 Rollup Protocol
```python
class RollupProtocol:
def __init__(self, layer1: Layer1, rollup_type: RollupType):
self.layer1 = layer1
self.rollup_type = rollup_type
self.state = RollupState()
async def submit_batch(self, batch: TransactionBatch):
"""Submit batch of transactions to Layer 1"""
if self.rollup_type == RollupType.ZK:
# Generate ZK proof for batch
proof = await self.generate_zk_proof(batch)
await self.layer1.submit_zk_batch(batch, proof)
else:
# Submit optimistic batch
await self.layer1.submit_optimistic_batch(batch)
async def generate_zk_proof(self, batch: TransactionBatch) -> ZKProof:
"""Generate zero-knowledge proof for batch"""
# Create computation circuit
circuit = self.create_batch_circuit(batch)
# Generate witness
witness = self.generate_witness(batch, self.state)
# Generate proof
proving_key = await self.load_proving_key()
proof = await zk_prove(circuit, witness, proving_key)
return proof
async def verify_batch(self, batch: TransactionBatch, proof: ZKProof) -> bool:
"""Verify batch validity"""
if self.rollup_type == RollupType.ZK:
# Verify ZK proof
circuit = self.create_batch_circuit(batch)
verification_key = await self.load_verification_key()
return await zk_verify(circuit, proof, verification_key)
else:
# Optimistic rollup - assume valid unless challenged
return True
```
#### 2.3 AI-Specific Optimizations
```python
class AIShardManager(ShardManager):
def __init__(self, shard_id: int, specialization: AISpecialization):
super().__init__(shard_id)
self.specialization = specialization
self.model_cache = ModelCache()
self.compute_pool = ComputePool()
async def execute_inference(self, inference_tx: InferenceTransaction):
"""Execute AI inference transaction"""
# Load model from cache or storage
model = await self.model_cache.get(inference_tx.model_id)
# Allocate compute resources
compute_node = await self.compute_pool.allocate(
inference_tx.compute_requirements
)
try:
# Execute inference
result = await compute_node.run_inference(
model, inference_tx.input_data
)
# Verify result with ZK proof
proof = await self.generate_inference_proof(
model, inference_tx.input_data, result
)
# Update state
await self.update_inference_state(inference_tx, result, proof)
return result
finally:
# Release compute resources
await self.compute_pool.release(compute_node)
async def store_model(self, model_tx: ModelStorageTransaction):
"""Store AI model on shard"""
# Compress model for storage
compressed_model = await self.compress_model(model_tx.model)
# Split across multiple shards if large
if len(compressed_model) > self.shard_capacity:
shards = await self.split_model(compressed_model)
for i, shard_data in enumerate(shards):
await self.store_model_shard(model_tx.model_id, i, shard_data)
else:
await self.store_model_single(model_tx.model_id, compressed_model)
# Update model registry
await self.update_model_registry(model_tx)
```
### Phase 3: Implementation (Months 5-6)
#### 3.1 Core Components
- **Beacon Chain**: Coordination and randomness
- **Shard Chains**: Individual shard implementations
- **Rollup Contracts**: Layer 1 integration contracts
- **Cross-Shard Messaging**: Communication protocol
- **State Manager**: State synchronization
#### 3.2 AI/ML Components
- **Model Storage**: Efficient large model storage
- **Inference Engine**: On-chain inference execution
- **Data Pipeline**: Training data handling
- **Result Verification**: ZK proofs for computations
#### 3.3 Developer Tools
- **SDK**: Multi-language development kit
- **Testing Framework**: Shard-aware testing
- **Deployment Tools**: Automated deployment
- **Monitoring**: Cross-shard observability
### Phase 4: Testing & Optimization (Months 7-8)
#### 4.1 Performance Testing
- **Throughput**: Measure TPS per shard and total
- **Latency**: Cross-shard transaction latency
- **Scalability**: Performance with increasing shards
- **Resource Usage**: Validator requirements
#### 4.2 Security Testing
- **Attack Scenarios**: Various attack vectors
- **Fault Tolerance**: Shard failure handling
- **State Consistency**: Cross-shard state consistency
- **Privacy**: ZK proof security
#### 4.3 AI Workload Testing
- **Model Storage**: Large model storage efficiency
- **Inference Performance**: On-chain inference speed
- **Data Throughput**: Training data handling
- **Cost Analysis**: Gas optimization
## Technical Specifications
### Sharding Parameters
| Parameter | Value | Description |
|-----------|-------|-------------|
| Number of Shards | 64-1024 | Dynamically adjustable |
| Shard Size | 100-500 MB | State per shard |
| Cross-Shard Latency | <500ms | Message passing |
| Validator per Shard | 100-1000 | Randomly sampled |
| Shard Block Time | 500ms | Individual shard |
### Rollup Parameters
| Parameter | ZK-Rollup | Optimistic |
|-----------|-----------|------------|
| TPS | 20,000 | 50,000 |
| Finality | 10 minutes | 1 week |
| Gas per TX | 500-2000 | 100-500 |
| Data Availability | On-chain | Off-chain |
| Privacy | Full | None |
### AI-Specific Parameters
| Parameter | Value | Description |
|-----------|-------|-------------|
| Max Model Size | 10GB | Per model |
| Inference Time | <5s | Per inference |
| Parallelism | 1000 | Concurrent inferences |
| Proof Generation | 30s | ZK proof time |
| Storage Cost | $0.01/GB/month | Model storage |
## Security Analysis
### Sharding Security
#### 1. Single-Shard Takeover
- **Attack**: Control majority of validators in one shard
- **Defense**: Random validator assignment, stake requirements
- **Detection**: Beacon chain monitoring, slash conditions
#### 2. Cross-Shard Replay
- **Attack**: Replay transaction across shards
- **Defense**: Nonce management, shard-specific signatures
- **Detection**: Transaction deduplication
#### 3. State Corruption
- **Attack**: Corrupt state in one shard
- **Defense**: State roots, fraud proofs
- **Detection**: Merkle proof verification
### Rollup Security
#### 1. Invalid State Transition
- **Attack**: Submit invalid batch to Layer 1
- **Defense**: ZK proofs, fraud proofs
- **Detection**: Challenge period, verification
#### 2. Data Withholding
- **Attack**: Withhold transaction data
- **Defense**: Data availability proofs
- **Detection**: Availability checks
#### 3. Exit Scams
- **Attack**: Operator steals funds
- **Defense**: Withdrawal delays, guardians
- **Detection**: Watchtower monitoring
## Implementation Plan
### Phase 1: Foundation (Months 1-2)
- [ ] Complete architecture design
- [ ] Specify protocols and interfaces
- [ ] Create development environment
- [ ] Set up test infrastructure
### Phase 2: Core Development (Months 3-4)
- [ ] Implement beacon chain
- [ ] Develop shard chains
- [ ] Create rollup contracts
- [ ] Build cross-shard messaging
### Phase 3: AI Integration (Months 5-6)
- [ ] Implement model storage
- [ ] Build inference engine
- [ ] Create ZK proof circuits
- [ ] Optimize gas usage
### Phase 4: Testing (Months 7-8)
- [ ] Performance benchmarking
- [ ] Security audits
- [ ] AI workload testing
- [ ] Community testing
### Phase 5: Deployment (Months 9-12)
- [ ] Testnet deployment
- [ ] Mainnet preparation
- [ ] Developer onboarding
- [ ] Documentation
## Deliverables
### Technical Deliverables
1. **Sharding Protocol Specification** (Month 2)
2. **Rollup Implementation** (Month 4)
3. **AI/ML Integration Layer** (Month 6)
4. **Performance Benchmarks** (Month 8)
5. **Mainnet Deployment** (Month 12)
### Research Deliverables
1. **Conference Papers**: 2 papers on sharding and rollups
2. **Technical Reports**: Quarterly progress reports
3. **Open Source**: All code under permissive license
4. **Standards**: Proposals for industry standards
### Community Deliverables
1. **Developer Documentation**: Comprehensive guides
2. **Tutorials**: AI/ML on blockchain examples
3. **Tools**: SDK and development tools
4. **Support**: Community support channels
## Resource Requirements
### Team
- **Principal Investigator** (1): Scaling and distributed systems
- **Protocol Engineers** (3): Core protocol implementation
- **AI/ML Engineers** (2): AI-specific optimizations
- **Cryptography Engineers** (2): ZK proofs and security
- **Security Researchers** (2): Security analysis and audits
- **DevOps Engineers** (1): Infrastructure and deployment
### Infrastructure
- **Development Cluster**: 64 nodes for sharding tests
- **AI Compute**: GPU cluster for model testing
- **Storage**: 1PB for model storage tests
- **Network**: High-bandwidth for cross-shard testing
### Budget
- **Personnel**: $6M
- **Infrastructure**: $2M
- **Security Audits**: $1M
- **Community**: $1M
## Success Metrics
### Technical Metrics
- [ ] Achieve 100,000+ TPS total throughput
- [ ] Maintain <1s cross-shard latency
- [ ] Support 10GB+ model storage
- [ ] Handle 1,000+ concurrent inferences
- [ ] Pass 3 security audits
### Adoption Metrics
- [ ] 100+ DApps deployed on sharded network
- [ ] 10+ AI models running on-chain
- [ ] 1,000+ active developers
- [ ] 50,000+ daily active users
- [ ] 5+ enterprise partnerships
### Research Metrics
- [ ] 2+ papers accepted at top conferences
- [ ] 3+ patents filed
- [ ] 10+ academic collaborations
- [ ] Open source project with 5,000+ stars
- [ ] Industry recognition
## Risk Mitigation
### Technical Risks
1. **Complexity**: Sharding adds significant complexity
- Mitigation: Incremental development, extensive testing
2. **State Bloat**: Large AI models increase state size
- Mitigation: Compression, pruning, archival nodes
3. **Cross-Shard Overhead**: Communication may be expensive
- Mitigation: Batch operations, efficient routing
### Security Risks
1. **Shard Isolation**: Security issues in one shard
- Mitigation: Shared security, monitoring
2. **Centralization**: Large validators may dominate
- Mitigation: Stake limits, random assignment
3. **ZK Proof Risks**: Cryptographic vulnerabilities
- Mitigation: Multiple implementations, audits
### Adoption Risks
1. **Developer Complexity**: Harder to develop for sharded chain
- Mitigation: Abstractions, SDK, documentation
2. **Migration Difficulty**: Hard to move from monolithic
- Mitigation: Migration tools, backward compatibility
3. **Competition**: Other scaling solutions
- Mitigation: AI-specific optimizations, partnerships
## Conclusion
This research plan presents a comprehensive approach to blockchain scaling through sharding and rollups, specifically optimized for AI/ML workloads. The combination of horizontal scaling through sharding and computation efficiency through rollups provides a path to 100,000+ TPS while maintaining security and decentralization.
The focus on AI-specific optimizations, including efficient model storage, on-chain inference, and privacy-preserving computations, positions AITBC as the leading platform for decentralized AI applications.
The 12-month timeline with clear milestones and deliverables ensures steady progress toward production-ready implementation. The research outcomes will not only benefit AITBC but contribute to the broader blockchain ecosystem.
---
*This research plan will evolve as we learn from implementation and community feedback. Regular reviews and updates ensure the research remains aligned with ecosystem needs.*