- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels - Implement confidential transaction models with encryption support and access control - Add key management system with registration, rotation, and audit logging - Create services and registry routers for service discovery and management - Integrate ZK proof generation for privacy-preserving receipts - Add metrics instru
18 KiB
Blockchain Scaling Research Plan
Executive Summary
This research plan addresses blockchain scalability through sharding and rollup architectures, targeting throughput of 100,000+ TPS while maintaining decentralization and security. The research focuses on practical implementations suitable for AI/ML workloads, including state sharding for large model storage, ZK-rollups for privacy-preserving computations, and hybrid rollup strategies optimized for decentralized marketplaces.
Research Objectives
Primary Objectives
- Achieve 100,000+ TPS through horizontal scaling
- Support AI workloads with efficient state management
- Maintain security across sharded architecture
- Enable cross-shard communication with minimal overhead
- Implement dynamic sharding based on network demand
Secondary Objectives
- Optimize for large data (model weights, datasets)
- Support complex computations (AI inference, training)
- Ensure interoperability with existing chains
- Minimize validator requirements for broader participation
- Provide developer-friendly abstractions
Technical Architecture
Sharding Architecture
┌─────────────────────────────────────────────────────────────┐
│ Beacon Chain │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ Random │ │ Cross-Shard │ │ State Management │ │
│ │ Sampling │ │ Messaging │ │ Coordinator │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
└─────────────────┬───────────────────────────────────────────┘
│
┌─────────────┴─────────────┐
│ Shard Chains │
│ ┌─────┐ ┌─────┐ ┌─────┐ │
│ │ S0 │ │ S1 │ │ S2 │ │
│ │ │ │ │ │ │ │
│ │ AI │ │ DeFi│ │ NFT │ │
│ └─────┘ └─────┘ └─────┘ │
└───────────────────────────┘
Rollup Stack
┌─────────────────────────────────────────────────────────────┐
│ Layer 1 (Base) │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ State │ │ Data │ │ Execution │ │
│ Roots │ │ Availability │ │ Environment │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
└─────────────────┬───────────────────────────────────────────┘
│
┌─────────────┴─────────────┐
│ Layer 2 Rollups │
│ ┌─────────┐ ┌─────────┐ │
│ │ ZK-Rollup│ │Optimistic│ │
│ │ │ │ Rollup │ │
│ │ Privacy │ │ Speed │ │
│ └─────────┘ └─────────┘ │
└───────────────────────────┘
Research Methodology
Phase 1: Architecture Design (Months 1-2)
1.1 Sharding Design
- State Sharding: Partition state across shards
- Transaction Sharding: Route transactions to appropriate shards
- Cross-Shard Communication: Efficient message passing
- Validator Assignment: Random sampling with stake weighting
1.2 Rollup Design
- ZK-Rollup: Privacy-preserving computations
- Optimistic Rollup: High throughput for simple operations
- Hybrid Approach: Dynamic selection based on operation type
- Data Availability: Ensuring data accessibility
1.3 Integration Design
- Unified Interface: Seamless interaction between shards and rollups
- State Synchronization: Consistent state across layers
- Security Model: Shared security across all components
- Developer SDK: Abstractions for easy development
Phase 2: Protocol Specification (Months 3-4)
2.1 Sharding Protocol
class ShardingProtocol:
def __init__(self, num_shards: int, beacon_chain: BeaconChain):
self.num_shards = num_shards
self.beacon_chain = beacon_chain
self.shard_managers = [ShardManager(i) for i in range(num_shards)]
def route_transaction(self, tx: Transaction) -> ShardId:
"""Route transaction to appropriate shard"""
if tx.is_cross_shard():
return self.beacon_chain.handle_cross_shard(tx)
else:
shard_id = self.calculate_shard_id(tx)
return self.shard_managers[shard_id].submit_transaction(tx)
def calculate_shard_id(self, tx: Transaction) -> int:
"""Calculate target shard for transaction"""
# Use transaction hash for deterministic routing
return int(hash(tx.hash) % self.num_shards)
async def execute_cross_shard_tx(self, tx: CrossShardTransaction):
"""Execute cross-shard transaction"""
# Lock accounts on all involved shards
locks = await self.acquire_cross_shard_locks(tx.involved_shards)
try:
# Execute transaction atomically
results = []
for shard_id in tx.involved_shards:
result = await self.shard_managers[shard_id].execute(tx)
results.append(result)
# Commit if all executions succeed
await self.commit_cross_shard_tx(tx, results)
except Exception as e:
# Rollback on failure
await self.rollback_cross_shard_tx(tx)
raise e
finally:
# Release locks
await self.release_cross_shard_locks(locks)
2.2 Rollup Protocol
class RollupProtocol:
def __init__(self, layer1: Layer1, rollup_type: RollupType):
self.layer1 = layer1
self.rollup_type = rollup_type
self.state = RollupState()
async def submit_batch(self, batch: TransactionBatch):
"""Submit batch of transactions to Layer 1"""
if self.rollup_type == RollupType.ZK:
# Generate ZK proof for batch
proof = await self.generate_zk_proof(batch)
await self.layer1.submit_zk_batch(batch, proof)
else:
# Submit optimistic batch
await self.layer1.submit_optimistic_batch(batch)
async def generate_zk_proof(self, batch: TransactionBatch) -> ZKProof:
"""Generate zero-knowledge proof for batch"""
# Create computation circuit
circuit = self.create_batch_circuit(batch)
# Generate witness
witness = self.generate_witness(batch, self.state)
# Generate proof
proving_key = await self.load_proving_key()
proof = await zk_prove(circuit, witness, proving_key)
return proof
async def verify_batch(self, batch: TransactionBatch, proof: ZKProof) -> bool:
"""Verify batch validity"""
if self.rollup_type == RollupType.ZK:
# Verify ZK proof
circuit = self.create_batch_circuit(batch)
verification_key = await self.load_verification_key()
return await zk_verify(circuit, proof, verification_key)
else:
# Optimistic rollup - assume valid unless challenged
return True
2.3 AI-Specific Optimizations
class AIShardManager(ShardManager):
def __init__(self, shard_id: int, specialization: AISpecialization):
super().__init__(shard_id)
self.specialization = specialization
self.model_cache = ModelCache()
self.compute_pool = ComputePool()
async def execute_inference(self, inference_tx: InferenceTransaction):
"""Execute AI inference transaction"""
# Load model from cache or storage
model = await self.model_cache.get(inference_tx.model_id)
# Allocate compute resources
compute_node = await self.compute_pool.allocate(
inference_tx.compute_requirements
)
try:
# Execute inference
result = await compute_node.run_inference(
model, inference_tx.input_data
)
# Verify result with ZK proof
proof = await self.generate_inference_proof(
model, inference_tx.input_data, result
)
# Update state
await self.update_inference_state(inference_tx, result, proof)
return result
finally:
# Release compute resources
await self.compute_pool.release(compute_node)
async def store_model(self, model_tx: ModelStorageTransaction):
"""Store AI model on shard"""
# Compress model for storage
compressed_model = await self.compress_model(model_tx.model)
# Split across multiple shards if large
if len(compressed_model) > self.shard_capacity:
shards = await self.split_model(compressed_model)
for i, shard_data in enumerate(shards):
await self.store_model_shard(model_tx.model_id, i, shard_data)
else:
await self.store_model_single(model_tx.model_id, compressed_model)
# Update model registry
await self.update_model_registry(model_tx)
Phase 3: Implementation (Months 5-6)
3.1 Core Components
- Beacon Chain: Coordination and randomness
- Shard Chains: Individual shard implementations
- Rollup Contracts: Layer 1 integration contracts
- Cross-Shard Messaging: Communication protocol
- State Manager: State synchronization
3.2 AI/ML Components
- Model Storage: Efficient large model storage
- Inference Engine: On-chain inference execution
- Data Pipeline: Training data handling
- Result Verification: ZK proofs for computations
3.3 Developer Tools
- SDK: Multi-language development kit
- Testing Framework: Shard-aware testing
- Deployment Tools: Automated deployment
- Monitoring: Cross-shard observability
Phase 4: Testing & Optimization (Months 7-8)
4.1 Performance Testing
- Throughput: Measure TPS per shard and total
- Latency: Cross-shard transaction latency
- Scalability: Performance with increasing shards
- Resource Usage: Validator requirements
4.2 Security Testing
- Attack Scenarios: Various attack vectors
- Fault Tolerance: Shard failure handling
- State Consistency: Cross-shard state consistency
- Privacy: ZK proof security
4.3 AI Workload Testing
- Model Storage: Large model storage efficiency
- Inference Performance: On-chain inference speed
- Data Throughput: Training data handling
- Cost Analysis: Gas optimization
Technical Specifications
Sharding Parameters
| Parameter | Value | Description |
|---|---|---|
| Number of Shards | 64-1024 | Dynamically adjustable |
| Shard Size | 100-500 MB | State per shard |
| Cross-Shard Latency | <500ms | Message passing |
| Validator per Shard | 100-1000 | Randomly sampled |
| Shard Block Time | 500ms | Individual shard |
Rollup Parameters
| Parameter | ZK-Rollup | Optimistic |
|---|---|---|
| TPS | 20,000 | 50,000 |
| Finality | 10 minutes | 1 week |
| Gas per TX | 500-2000 | 100-500 |
| Data Availability | On-chain | Off-chain |
| Privacy | Full | None |
AI-Specific Parameters
| Parameter | Value | Description |
|---|---|---|
| Max Model Size | 10GB | Per model |
| Inference Time | <5s | Per inference |
| Parallelism | 1000 | Concurrent inferences |
| Proof Generation | 30s | ZK proof time |
| Storage Cost | $0.01/GB/month | Model storage |
Security Analysis
Sharding Security
1. Single-Shard Takeover
- Attack: Control majority of validators in one shard
- Defense: Random validator assignment, stake requirements
- Detection: Beacon chain monitoring, slash conditions
2. Cross-Shard Replay
- Attack: Replay transaction across shards
- Defense: Nonce management, shard-specific signatures
- Detection: Transaction deduplication
3. State Corruption
- Attack: Corrupt state in one shard
- Defense: State roots, fraud proofs
- Detection: Merkle proof verification
Rollup Security
1. Invalid State Transition
- Attack: Submit invalid batch to Layer 1
- Defense: ZK proofs, fraud proofs
- Detection: Challenge period, verification
2. Data Withholding
- Attack: Withhold transaction data
- Defense: Data availability proofs
- Detection: Availability checks
3. Exit Scams
- Attack: Operator steals funds
- Defense: Withdrawal delays, guardians
- Detection: Watchtower monitoring
Implementation Plan
Phase 1: Foundation (Months 1-2)
- Complete architecture design
- Specify protocols and interfaces
- Create development environment
- Set up test infrastructure
Phase 2: Core Development (Months 3-4)
- Implement beacon chain
- Develop shard chains
- Create rollup contracts
- Build cross-shard messaging
Phase 3: AI Integration (Months 5-6)
- Implement model storage
- Build inference engine
- Create ZK proof circuits
- Optimize gas usage
Phase 4: Testing (Months 7-8)
- Performance benchmarking
- Security audits
- AI workload testing
- Community testing
Phase 5: Deployment (Months 9-12)
- Testnet deployment
- Mainnet preparation
- Developer onboarding
- Documentation
Deliverables
Technical Deliverables
- Sharding Protocol Specification (Month 2)
- Rollup Implementation (Month 4)
- AI/ML Integration Layer (Month 6)
- Performance Benchmarks (Month 8)
- Mainnet Deployment (Month 12)
Research Deliverables
- Conference Papers: 2 papers on sharding and rollups
- Technical Reports: Quarterly progress reports
- Open Source: All code under permissive license
- Standards: Proposals for industry standards
Community Deliverables
- Developer Documentation: Comprehensive guides
- Tutorials: AI/ML on blockchain examples
- Tools: SDK and development tools
- Support: Community support channels
Resource Requirements
Team
- Principal Investigator (1): Scaling and distributed systems
- Protocol Engineers (3): Core protocol implementation
- AI/ML Engineers (2): AI-specific optimizations
- Cryptography Engineers (2): ZK proofs and security
- Security Researchers (2): Security analysis and audits
- DevOps Engineers (1): Infrastructure and deployment
Infrastructure
- Development Cluster: 64 nodes for sharding tests
- AI Compute: GPU cluster for model testing
- Storage: 1PB for model storage tests
- Network: High-bandwidth for cross-shard testing
Budget
- Personnel: $6M
- Infrastructure: $2M
- Security Audits: $1M
- Community: $1M
Success Metrics
Technical Metrics
- Achieve 100,000+ TPS total throughput
- Maintain <1s cross-shard latency
- Support 10GB+ model storage
- Handle 1,000+ concurrent inferences
- Pass 3 security audits
Adoption Metrics
- 100+ DApps deployed on sharded network
- 10+ AI models running on-chain
- 1,000+ active developers
- 50,000+ daily active users
- 5+ enterprise partnerships
Research Metrics
- 2+ papers accepted at top conferences
- 3+ patents filed
- 10+ academic collaborations
- Open source project with 5,000+ stars
- Industry recognition
Risk Mitigation
Technical Risks
- Complexity: Sharding adds significant complexity
- Mitigation: Incremental development, extensive testing
- State Bloat: Large AI models increase state size
- Mitigation: Compression, pruning, archival nodes
- Cross-Shard Overhead: Communication may be expensive
- Mitigation: Batch operations, efficient routing
Security Risks
- Shard Isolation: Security issues in one shard
- Mitigation: Shared security, monitoring
- Centralization: Large validators may dominate
- Mitigation: Stake limits, random assignment
- ZK Proof Risks: Cryptographic vulnerabilities
- Mitigation: Multiple implementations, audits
Adoption Risks
- Developer Complexity: Harder to develop for sharded chain
- Mitigation: Abstractions, SDK, documentation
- Migration Difficulty: Hard to move from monolithic
- Mitigation: Migration tools, backward compatibility
- Competition: Other scaling solutions
- Mitigation: AI-specific optimizations, partnerships
Conclusion
This research plan presents a comprehensive approach to blockchain scaling through sharding and rollups, specifically optimized for AI/ML workloads. The combination of horizontal scaling through sharding and computation efficiency through rollups provides a path to 100,000+ TPS while maintaining security and decentralization.
The focus on AI-specific optimizations, including efficient model storage, on-chain inference, and privacy-preserving computations, positions AITBC as the leading platform for decentralized AI applications.
The 12-month timeline with clear milestones and deliverables ensures steady progress toward production-ready implementation. The research outcomes will not only benefit AITBC but contribute to the broader blockchain ecosystem.
This research plan will evolve as we learn from implementation and community feedback. Regular reviews and updates ensure the research remains aligned with ecosystem needs.