feat: add marketplace metrics, privacy features, and service registry endpoints
- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels - Implement confidential transaction models with encryption support and access control - Add key management system with registration, rotation, and audit logging - Create services and registry routers for service discovery and management - Integrate ZK proof generation for privacy-preserving receipts - Add metrics instru
This commit is contained in:
654
research/consortium/zk_applications_research_plan.md
Normal file
654
research/consortium/zk_applications_research_plan.md
Normal file
@ -0,0 +1,654 @@
|
||||
# Zero-Knowledge Applications Research Plan
|
||||
|
||||
## Executive Summary
|
||||
|
||||
This research plan explores advanced zero-knowledge (ZK) applications for the AITBC platform, focusing on privacy-preserving AI computations, verifiable machine learning, and scalable ZK proof systems. The research aims to make AITBC the leading platform for privacy-preserving AI/ML workloads while advancing the state of ZK technology through novel circuit designs and optimization techniques.
|
||||
|
||||
## Research Objectives
|
||||
|
||||
### Primary Objectives
|
||||
1. **Enable Private AI Inference** without revealing models or data
|
||||
2. **Implement Verifiable ML** with proof of correct computation
|
||||
3. **Scale ZK Proofs** to handle large AI models efficiently
|
||||
4. **Create ZK Dev Tools** for easy application development
|
||||
5. **Standardize ZK Protocols** for interoperability
|
||||
|
||||
### Secondary Objectives
|
||||
1. **Reduce Proof Generation Time** by 90% through optimization
|
||||
2. **Support Recursive Proofs** for complex workflows
|
||||
3. **Enable ZK Rollups** with AI-specific optimizations
|
||||
4. **Create ZK Marketplace** for privacy-preserving services
|
||||
5. **Develop ZK Identity** for anonymous AI agents
|
||||
|
||||
## Technical Architecture
|
||||
|
||||
### ZK Stack Architecture
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Application Layer │
|
||||
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
|
||||
│ │ AI/ML │ │ DeFi │ │ Identity │ │
|
||||
│ │ Services │ │ Applications │ │ Systems │ │
|
||||
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ ZK Abstraction Layer │
|
||||
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
|
||||
│ │ Circuit │ │ Proof │ │ Verification │ │
|
||||
│ │ Builder │ │ Generator │ │ Engine │ │
|
||||
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Core ZK Infrastructure │
|
||||
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
|
||||
│ │ Groth16 │ │ PLONK │ │ Halo2 │ │
|
||||
│ │ Prover │ │ Prover │ │ Prover │ │
|
||||
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
### AI-Specific ZK Applications
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Privacy-Preserving AI │
|
||||
│ │
|
||||
│ Input Data ──┐ │
|
||||
│ ├───► ZK Circuit ──┐ │
|
||||
│ Model Weights─┘ │ │
|
||||
│ ├───► ZK Proof ──► Result │
|
||||
│ Computation ──────────────────┘ │
|
||||
│ │
|
||||
│ ✓ Private inference without revealing model │
|
||||
│ ✓ Verifiable computation with proof │
|
||||
│ ✓ Composable proofs for complex workflows │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## Research Methodology
|
||||
|
||||
### Phase 1: Foundation (Months 1-2)
|
||||
|
||||
#### 1.1 ZK Circuit Design for AI
|
||||
- **Neural Network Circuits**: Efficient ZK circuits for common layers
|
||||
- **Optimization Techniques**: Reducing constraint count
|
||||
- **Lookup Tables**: Optimizing non-linear operations
|
||||
- **Recursive Composition**: Building complex proofs from simple ones
|
||||
|
||||
#### 1.2 Proof System Optimization
|
||||
- **Prover Performance**: GPU/ASIC acceleration
|
||||
- **Verifier Efficiency**: Constant-time verification
|
||||
- **Proof Size**: Minimizing proof bandwidth
|
||||
- **Parallelization**: Multi-core proving strategies
|
||||
|
||||
#### 1.3 Privacy Model Design
|
||||
- **Data Privacy**: Protecting input/output data
|
||||
- **Model Privacy**: Protecting model parameters
|
||||
- **Computation Privacy**: Hiding computation patterns
|
||||
- **Composition Privacy**: Composable privacy guarantees
|
||||
|
||||
### Phase 2: Implementation (Months 3-4)
|
||||
|
||||
#### 2.1 Core ZK Library
|
||||
```python
|
||||
class ZKProver:
|
||||
def __init__(self, proving_system: ProvingSystem):
|
||||
self.proving_system = proving_system
|
||||
self.circuit_cache = CircuitCache()
|
||||
self.proving_key_cache = ProvingKeyCache()
|
||||
|
||||
async def prove_inference(
|
||||
self,
|
||||
model: NeuralNetwork,
|
||||
input_data: Tensor,
|
||||
witness: Optional[Tensor] = None
|
||||
) -> ZKProof:
|
||||
"""Generate ZK proof for model inference"""
|
||||
|
||||
# Build or retrieve circuit
|
||||
circuit = await self.circuit_cache.get_or_build(model)
|
||||
|
||||
# Generate witness
|
||||
if witness is None:
|
||||
witness = await self.generate_witness(model, input_data)
|
||||
|
||||
# Load proving key
|
||||
proving_key = await self.proving_key_cache.get(circuit.id)
|
||||
|
||||
# Generate proof
|
||||
proof = await self.proving_system.prove(
|
||||
circuit, witness, proving_key
|
||||
)
|
||||
|
||||
return proof
|
||||
|
||||
async def verify_inference(
|
||||
self,
|
||||
proof: ZKProof,
|
||||
public_inputs: PublicInputs,
|
||||
circuit_id: str
|
||||
) -> bool:
|
||||
"""Verify ZK proof of inference"""
|
||||
|
||||
# Load verification key
|
||||
verification_key = await self.load_verification_key(circuit_id)
|
||||
|
||||
# Verify proof
|
||||
return await self.proving_system.verify(
|
||||
proof, public_inputs, verification_key
|
||||
)
|
||||
|
||||
class AICircuitBuilder:
|
||||
def __init__(self):
|
||||
self.layer_builders = {
|
||||
'dense': self.build_dense_layer,
|
||||
'conv2d': self.build_conv2d_layer,
|
||||
'relu': self.build_relu_layer,
|
||||
'batch_norm': self.build_batch_norm_layer,
|
||||
}
|
||||
|
||||
async def build_circuit(self, model: NeuralNetwork) -> Circuit:
|
||||
"""Build ZK circuit for neural network"""
|
||||
|
||||
circuit = Circuit()
|
||||
|
||||
# Build layers sequentially
|
||||
for layer in model.layers:
|
||||
layer_type = layer.type
|
||||
builder = self.layer_builders[layer_type]
|
||||
circuit = await builder(circuit, layer)
|
||||
|
||||
# Add constraints for input/output privacy
|
||||
circuit = await self.add_privacy_constraints(circuit)
|
||||
|
||||
return circuit
|
||||
|
||||
async def build_dense_layer(
|
||||
self,
|
||||
circuit: Circuit,
|
||||
layer: DenseLayer
|
||||
) -> Circuit:
|
||||
"""Build ZK circuit for dense layer"""
|
||||
|
||||
# Create variables for weights and inputs
|
||||
weights = circuit.create_private_variables(layer.weight_shape)
|
||||
inputs = circuit.create_private_variables(layer.input_shape)
|
||||
|
||||
# Matrix multiplication constraints
|
||||
outputs = []
|
||||
for i in range(layer.output_size):
|
||||
weighted_sum = circuit.create_linear_combination(
|
||||
weights[i], inputs
|
||||
)
|
||||
output = circuit.add_constraint(
|
||||
weighted_sum + layer.bias[i],
|
||||
"dense_output"
|
||||
)
|
||||
outputs.append(output)
|
||||
|
||||
return circuit
|
||||
```
|
||||
|
||||
#### 2.2 Privacy-Preserving Inference
|
||||
```python
|
||||
class PrivateInferenceService:
|
||||
def __init__(self, zk_prover: ZKProver, model_store: ModelStore):
|
||||
self.zk_prover = zk_prover
|
||||
self.model_store = model_store
|
||||
|
||||
async def private_inference(
|
||||
self,
|
||||
model_id: str,
|
||||
encrypted_input: EncryptedData,
|
||||
privacy_requirements: PrivacyRequirements
|
||||
) -> InferenceResult:
|
||||
"""Perform private inference with ZK proof"""
|
||||
|
||||
# Decrypt input (only for computation)
|
||||
input_data = await self.decrypt_input(encrypted_input)
|
||||
|
||||
# Load model (encrypted at rest)
|
||||
model = await self.model_store.load_encrypted(model_id)
|
||||
|
||||
# Perform inference
|
||||
raw_output = await model.forward(input_data)
|
||||
|
||||
# Generate ZK proof
|
||||
proof = await self.zk_prover.prove_inference(
|
||||
model, input_data
|
||||
)
|
||||
|
||||
# Create result with proof
|
||||
result = InferenceResult(
|
||||
output=raw_output,
|
||||
proof=proof,
|
||||
model_id=model_id,
|
||||
timestamp=datetime.utcnow()
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
async def verify_inference(
|
||||
self,
|
||||
result: InferenceResult,
|
||||
public_commitments: PublicCommitments
|
||||
) -> bool:
|
||||
"""Verify inference result without learning output"""
|
||||
|
||||
# Verify ZK proof
|
||||
proof_valid = await self.zk_prover.verify_inference(
|
||||
result.proof,
|
||||
public_commitments,
|
||||
result.model_id
|
||||
)
|
||||
|
||||
return proof_valid
|
||||
```
|
||||
|
||||
#### 2.3 Verifiable Machine Learning
|
||||
```python
|
||||
class VerifiableML:
|
||||
def __init__(self, zk_prover: ZKProver):
|
||||
self.zk_prover = zk_prover
|
||||
|
||||
async def prove_training(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
model: NeuralNetwork,
|
||||
training_params: TrainingParams
|
||||
) -> TrainingProof:
|
||||
"""Generate proof of correct training"""
|
||||
|
||||
# Create training circuit
|
||||
circuit = await self.create_training_circuit(
|
||||
dataset, model, training_params
|
||||
)
|
||||
|
||||
# Generate witness from training process
|
||||
witness = await self.generate_training_witness(
|
||||
dataset, model, training_params
|
||||
)
|
||||
|
||||
# Generate proof
|
||||
proof = await self.zk_prover.prove_training(circuit, witness)
|
||||
|
||||
return TrainingProof(
|
||||
proof=proof,
|
||||
model_hash=model.hash(),
|
||||
dataset_hash=dataset.hash(),
|
||||
metrics=training_params.metrics
|
||||
)
|
||||
|
||||
async def prove_model_integrity(
|
||||
self,
|
||||
model: NeuralNetwork,
|
||||
expected_architecture: ModelArchitecture
|
||||
) -> IntegrityProof:
|
||||
"""Proof that model matches expected architecture"""
|
||||
|
||||
# Create architecture verification circuit
|
||||
circuit = await self.create_architecture_circuit(
|
||||
expected_architecture
|
||||
)
|
||||
|
||||
# Generate witness from model
|
||||
witness = await self.extract_model_witness(model)
|
||||
|
||||
# Generate proof
|
||||
proof = await self.zk_prover.prove(circuit, witness)
|
||||
|
||||
return IntegrityProof(
|
||||
proof=proof,
|
||||
architecture_hash=expected_architecture.hash()
|
||||
)
|
||||
```
|
||||
|
||||
### Phase 3: Advanced Applications (Months 5-6)
|
||||
|
||||
#### 3.1 ZK Rollups for AI
|
||||
```python
|
||||
class ZKAIRollup:
|
||||
def __init__(self, layer1: Layer1, zk_prover: ZKProver):
|
||||
self.layer1 = layer1
|
||||
self.zk_prover = zk_prover
|
||||
self.state = RollupState()
|
||||
|
||||
async def submit_batch(
|
||||
self,
|
||||
operations: List[AIOperation]
|
||||
) -> BatchProof:
|
||||
"""Submit batch of AI operations to rollup"""
|
||||
|
||||
# Create batch circuit
|
||||
circuit = await self.create_batch_circuit(operations)
|
||||
|
||||
# Generate witness
|
||||
witness = await self.generate_batch_witness(
|
||||
operations, self.state
|
||||
)
|
||||
|
||||
# Generate proof
|
||||
proof = await self.zk_prover.prove_batch(circuit, witness)
|
||||
|
||||
# Submit to Layer 1
|
||||
await self.layer1.submit_ai_batch(proof, operations)
|
||||
|
||||
return BatchProof(proof=proof, operations=operations)
|
||||
|
||||
async def create_batch_circuit(
|
||||
self,
|
||||
operations: List[AIOperation]
|
||||
) -> Circuit:
|
||||
"""Create circuit for batch of operations"""
|
||||
|
||||
circuit = Circuit()
|
||||
|
||||
# Add constraints for each operation
|
||||
for op in operations:
|
||||
if op.type == "inference":
|
||||
circuit = await self.add_inference_constraints(
|
||||
circuit, op
|
||||
)
|
||||
elif op.type == "training":
|
||||
circuit = await self.add_training_constraints(
|
||||
circuit, op
|
||||
)
|
||||
elif op.type == "model_update":
|
||||
circuit = await self.add_update_constraints(
|
||||
circuit, op
|
||||
)
|
||||
|
||||
# Add batch-level constraints
|
||||
circuit = await self.add_batch_constraints(circuit, operations)
|
||||
|
||||
return circuit
|
||||
```
|
||||
|
||||
#### 3.2 ZK Identity for AI Agents
|
||||
```python
|
||||
class ZKAgentIdentity:
|
||||
def __init__(self, zk_prover: ZKProver):
|
||||
self.zk_prover = zk_prover
|
||||
self.identity_registry = IdentityRegistry()
|
||||
|
||||
async def create_agent_identity(
|
||||
self,
|
||||
agent_capabilities: AgentCapabilities,
|
||||
reputation_data: ReputationData
|
||||
) -> AgentIdentity:
|
||||
"""Create ZK identity for AI agent"""
|
||||
|
||||
# Create identity circuit
|
||||
circuit = await self.create_identity_circuit()
|
||||
|
||||
# Generate commitment to capabilities
|
||||
capability_commitment = await self.commit_to_capabilities(
|
||||
agent_capabilities
|
||||
)
|
||||
|
||||
# Generate ZK proof of capabilities
|
||||
proof = await self.zk_prover.prove_capabilities(
|
||||
circuit, agent_capabilities, capability_commitment
|
||||
)
|
||||
|
||||
# Create identity
|
||||
identity = AgentIdentity(
|
||||
commitment=capability_commitment,
|
||||
proof=proof,
|
||||
nullifier=self.generate_nullifier(),
|
||||
created_at=datetime.utcnow()
|
||||
)
|
||||
|
||||
# Register identity
|
||||
await self.identity_registry.register(identity)
|
||||
|
||||
return identity
|
||||
|
||||
async def prove_capability(
|
||||
self,
|
||||
identity: AgentIdentity,
|
||||
required_capability: str,
|
||||
proof_data: Any
|
||||
) -> CapabilityProof:
|
||||
"""Proof that agent has required capability"""
|
||||
|
||||
# Create capability proof circuit
|
||||
circuit = await self.create_capability_circuit(required_capability)
|
||||
|
||||
# Generate witness
|
||||
witness = await self.generate_capability_witness(
|
||||
identity, proof_data
|
||||
)
|
||||
|
||||
# Generate proof
|
||||
proof = await self.zk_prover.prove_capability(circuit, witness)
|
||||
|
||||
return CapabilityProof(
|
||||
identity_commitment=identity.commitment,
|
||||
capability=required_capability,
|
||||
proof=proof
|
||||
)
|
||||
```
|
||||
|
||||
### Phase 4: Optimization & Scaling (Months 7-8)
|
||||
|
||||
#### 4.1 Proof Generation Optimization
|
||||
- **GPU Acceleration**: CUDA kernels for constraint solving
|
||||
- **Distributed Proving**: Multi-machine proof generation
|
||||
- **Circuit Specialization**: Hardware-specific optimizations
|
||||
- **Memory Optimization**: Efficient memory usage patterns
|
||||
|
||||
#### 4.2 Verification Optimization
|
||||
- **Recursive Verification**: Batch verification of proofs
|
||||
- **SNARK-friendly Hashes**: Efficient hash functions
|
||||
- **Aggregated Signatures**: Reduce verification overhead
|
||||
- **Lightweight Clients**: Mobile-friendly verification
|
||||
|
||||
#### 4.3 Storage Optimization
|
||||
- **Proof Compression**: Efficient proof encoding
|
||||
- **Circuit Caching**: Reuse of common circuits
|
||||
- **State Commitments**: Efficient state proofs
|
||||
- **Archival Strategies**: Long-term proof storage
|
||||
|
||||
## Technical Specifications
|
||||
|
||||
### Performance Targets
|
||||
|
||||
| Metric | Current | Target | Improvement |
|
||||
|--------|---------|--------|-------------|
|
||||
| Proof Generation | 10 minutes | 1 minute | 10x |
|
||||
| Proof Size | 1MB | 100KB | 10x |
|
||||
| Verification Time | 100ms | 10ms | 10x |
|
||||
| Supported Model Size | 10MB | 1GB | 100x |
|
||||
| Concurrent Proofs | 10 | 1000 | 100x |
|
||||
|
||||
### Supported Operations
|
||||
|
||||
| Operation | ZK Support | Privacy Level | Performance |
|
||||
|-----------|------------|---------------|-------------|
|
||||
| Inference | ✓ | Full | High |
|
||||
| Training | ✓ | Partial | Medium |
|
||||
| Model Update | ✓ | Full | High |
|
||||
| Data Sharing | ✓ | Full | High |
|
||||
| Reputation | ✓ | Partial | High |
|
||||
|
||||
### Circuit Library
|
||||
|
||||
| Circuit Type | Constraints | Use Case | Optimization |
|
||||
|--------------|-------------|----------|-------------|
|
||||
| Dense Layer | 10K-100K | Standard NN | Lookup Tables |
|
||||
| Convolution | 100K-1M | CNN | Winograd |
|
||||
| Attention | 1M-10M | Transformers | Sparse |
|
||||
| Pooling | 1K-10K | CNN | Custom |
|
||||
| Activation | 1K-10K | All | Lookup |
|
||||
|
||||
## Security Analysis
|
||||
|
||||
### Privacy Guarantees
|
||||
|
||||
#### 1. Input Privacy
|
||||
- **Zero-Knowledge**: Proofs reveal nothing about inputs
|
||||
- **Perfect Secrecy**: Information-theoretic privacy
|
||||
- **Composition**: Privacy preserved under composition
|
||||
|
||||
#### 2. Model Privacy
|
||||
- **Weight Encryption**: Model parameters encrypted
|
||||
- **Circuit Obfuscation**: Circuit structure hidden
|
||||
- **Access Control**: Fine-grained permissions
|
||||
|
||||
#### 3. Computation Privacy
|
||||
- **Timing Protection**: Constant-time operations
|
||||
- **Access Pattern**: ORAM for memory access
|
||||
- **Side-Channel**: Resistant to side-channel attacks
|
||||
|
||||
### Security Properties
|
||||
|
||||
#### 1. Soundness
|
||||
- **Computational**: Infeasible to forge invalid proofs
|
||||
- **Statistical**: Negligible soundness error
|
||||
- **Universal**: Works for all valid inputs
|
||||
|
||||
#### 2. Completeness
|
||||
- **Perfect**: All valid proofs verify
|
||||
- **Efficient**: Fast verification
|
||||
- **Robust**: Tolerates noise
|
||||
|
||||
#### 3. Zero-Knowledge
|
||||
- **Perfect**: Zero information leakage
|
||||
- **Simulation**: Simulator exists
|
||||
- **Composition**: Composable ZK
|
||||
|
||||
## Implementation Plan
|
||||
|
||||
### Phase 1: Foundation (Months 1-2)
|
||||
- [ ] Complete ZK circuit library design
|
||||
- [ ] Implement core prover/verifier
|
||||
- [ ] Create privacy model framework
|
||||
- [ ] Set up development environment
|
||||
|
||||
### Phase 2: Core Features (Months 3-4)
|
||||
- [ ] Implement private inference
|
||||
- [ ] Build verifiable ML system
|
||||
- [ ] Create ZK rollup for AI
|
||||
- [ ] Develop ZK identity system
|
||||
|
||||
### Phase 3: Advanced Features (Months 5-6)
|
||||
- [ ] Add recursive proofs
|
||||
- [ ] Implement distributed proving
|
||||
- [ ] Create ZK marketplace
|
||||
- [ ] Build developer SDK
|
||||
|
||||
### Phase 4: Optimization (Months 7-8)
|
||||
- [ ] GPU acceleration
|
||||
- [ ] Proof compression
|
||||
- [ ] Verification optimization
|
||||
- [ ] Storage optimization
|
||||
|
||||
### Phase 5: Integration (Months 9-12)
|
||||
- [ ] Integrate with AITBC
|
||||
- [ ] Deploy testnet
|
||||
- [ ] Developer onboarding
|
||||
- [ ] Mainnet launch
|
||||
|
||||
## Deliverables
|
||||
|
||||
### Technical Deliverables
|
||||
1. **ZK Circuit Library** (Month 2)
|
||||
2. **Private Inference System** (Month 4)
|
||||
3. **ZK Rollup Implementation** (Month 6)
|
||||
4. **Optimized Prover** (Month 8)
|
||||
5. **Mainnet Integration** (Month 12)
|
||||
|
||||
### Research Deliverables
|
||||
1. **Conference Papers**: 3 papers on ZK for AI
|
||||
2. **Technical Reports**: Quarterly progress
|
||||
3. **Open Source**: All code under MIT license
|
||||
4. **Standards**: ZK protocol specifications
|
||||
|
||||
### Developer Deliverables
|
||||
1. **SDK**: Multi-language development kit
|
||||
2. **Documentation**: Comprehensive guides
|
||||
3. **Examples**: AI/ML use cases
|
||||
4. **Tools**: Circuit compiler, debugger
|
||||
|
||||
## Resource Requirements
|
||||
|
||||
### Team
|
||||
- **Principal Investigator** (1): ZK cryptography expert
|
||||
- **Cryptography Engineers** (3): ZK system implementation
|
||||
- **AI/ML Engineers** (2): AI circuit design
|
||||
- **Systems Engineers** (2): Performance optimization
|
||||
- **Security Researchers** (2): Security analysis
|
||||
- **Developer Advocate** (1): Developer tools
|
||||
|
||||
### Infrastructure
|
||||
- **GPU Cluster**: 100 GPUs for proving
|
||||
- **Compute Nodes**: 50 CPU nodes for verification
|
||||
- **Storage**: 100TB for model storage
|
||||
- **Network**: High-bandwidth for data transfer
|
||||
|
||||
### Budget
|
||||
- **Personnel**: $7M
|
||||
- **Infrastructure**: $2M
|
||||
- **Research**: $1M
|
||||
- **Community**: $1M
|
||||
|
||||
## Success Metrics
|
||||
|
||||
### Technical Metrics
|
||||
- [ ] Achieve 1-minute proof generation
|
||||
- [ ] Support 1GB+ models
|
||||
- [ ] Handle 1000+ concurrent proofs
|
||||
- [ ] Pass 3 security audits
|
||||
- [ ] 10x improvement over baseline
|
||||
|
||||
### Adoption Metrics
|
||||
- [ ] 100+ AI models using ZK
|
||||
- [ ] 10+ enterprise applications
|
||||
- [ ] 1000+ active developers
|
||||
- [ ] 1M+ ZK proofs generated
|
||||
- [ ] 5+ partnerships
|
||||
|
||||
### Research Metrics
|
||||
- [ ] 3+ papers at top conferences
|
||||
- [ ] 5+ patents filed
|
||||
- [ ] 10+ academic collaborations
|
||||
- [ ] Open source with 10,000+ stars
|
||||
- [ ] Industry recognition
|
||||
|
||||
## Risk Mitigation
|
||||
|
||||
### Technical Risks
|
||||
1. **Proof Complexity**: AI circuits may be too complex
|
||||
- Mitigation: Incremental complexity, optimization
|
||||
2. **Performance**: May not meet performance targets
|
||||
- Mitigation: Hardware acceleration, parallelization
|
||||
3. **Security**: New attack vectors possible
|
||||
- Mitigation: Formal verification, audits
|
||||
|
||||
### Adoption Risks
|
||||
1. **Complexity**: Hard to use for developers
|
||||
- Mitigation: Abstractions, SDK, documentation
|
||||
2. **Cost**: Proving may be expensive
|
||||
- Mitigation: Optimization, subsidies
|
||||
3. **Interoperability**: May not work with other systems
|
||||
- Mitigation: Standards, bridges
|
||||
|
||||
### Research Risks
|
||||
1. **Dead Ends**: Some approaches may not work
|
||||
- Mitigation: Parallel research tracks
|
||||
2. **Obsolescence**: Technology may change
|
||||
- Mitigation: Flexible architecture
|
||||
3. **Competition**: Others may advance faster
|
||||
- Mitigation: Focus on AI specialization
|
||||
|
||||
## Conclusion
|
||||
|
||||
This research plan establishes AITBC as the leader in zero-knowledge applications for AI/ML workloads. The combination of privacy-preserving inference, verifiable machine learning, and scalable ZK infrastructure creates a unique value proposition for the AI community.
|
||||
|
||||
The 12-month timeline with clear deliverables ensures steady progress toward production-ready implementation. The research outcomes will not only benefit AITBC but advance the entire field of privacy-preserving AI.
|
||||
|
||||
By focusing on practical applications and developer experience, we ensure that the research translates into real-world impact, enabling the next generation of privacy-preserving AI applications on blockchain.
|
||||
|
||||
---
|
||||
|
||||
*This research plan will evolve based on technological advances and community feedback. Regular reviews ensure alignment with ecosystem needs.*
|
||||
Reference in New Issue
Block a user