Files
aitbc/research/consortium/zk_applications_research_plan.md
oib c8be9d7414 feat: add marketplace metrics, privacy features, and service registry endpoints
- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels
- Implement confidential transaction models with encryption support and access control
- Add key management system with registration, rotation, and audit logging
- Create services and registry routers for service discovery and management
- Integrate ZK proof generation for privacy-preserving receipts
- Add metrics instru
2025-12-22 10:33:23 +01:00

23 KiB

Zero-Knowledge Applications Research Plan

Executive Summary

This research plan explores advanced zero-knowledge (ZK) applications for the AITBC platform, focusing on privacy-preserving AI computations, verifiable machine learning, and scalable ZK proof systems. The research aims to make AITBC the leading platform for privacy-preserving AI/ML workloads while advancing the state of ZK technology through novel circuit designs and optimization techniques.

Research Objectives

Primary Objectives

  1. Enable Private AI Inference without revealing models or data
  2. Implement Verifiable ML with proof of correct computation
  3. Scale ZK Proofs to handle large AI models efficiently
  4. Create ZK Dev Tools for easy application development
  5. Standardize ZK Protocols for interoperability

Secondary Objectives

  1. Reduce Proof Generation Time by 90% through optimization
  2. Support Recursive Proofs for complex workflows
  3. Enable ZK Rollups with AI-specific optimizations
  4. Create ZK Marketplace for privacy-preserving services
  5. Develop ZK Identity for anonymous AI agents

Technical Architecture

ZK Stack Architecture

┌─────────────────────────────────────────────────────────────┐
│                    Application Layer                        │
│  ┌─────────────┐  ┌──────────────┐  ┌─────────────────────┐ │
│  │   AI/ML     │  │   DeFi       │  │    Identity         │ │
│  │ Services    │  │ Applications │  │   Systems           │ │
│  └─────────────┘  └──────────────┘  └─────────────────────┘ │
├─────────────────────────────────────────────────────────────┤
│                    ZK Abstraction Layer                     │
│  ┌─────────────┐  ┌──────────────┐  ┌─────────────────────┐ │
│  │   Circuit   │  │   Proof      │  │    Verification     │ │
│  │   Builder   │  │   Generator  │  │    Engine           │ │
│  └─────────────┘  └──────────────┘  └─────────────────────┘ │
├─────────────────────────────────────────────────────────────┤
│                    Core ZK Infrastructure                    │
│  ┌─────────────┐  ┌──────────────┐  ┌─────────────────────┐ │
│  │   Groth16   │  │   PLONK      │  │    Halo2            │ │
│  │   Prover    │  │   Prover     │  │    Prover           │ │
│  └─────────────┘  └──────────────┘  └─────────────────────┘ │
└─────────────────────────────────────────────────────────────┘

AI-Specific ZK Applications

┌─────────────────────────────────────────────────────────────┐
│                Privacy-Preserving AI                         │
│                                                             │
│  Input Data ──┐                                            │
│               ├───► ZK Circuit ──┐                           │
│  Model Weights─┘                │                           │
│                                 ├───► ZK Proof ──► Result   │
│  Computation ──────────────────┘                           │
│                                                             │
│  ✓ Private inference without revealing model              │
│  ✓ Verifiable computation with proof                       │
│  ✓ Composable proofs for complex workflows                │
└─────────────────────────────────────────────────────────────┘

Research Methodology

Phase 1: Foundation (Months 1-2)

1.1 ZK Circuit Design for AI

  • Neural Network Circuits: Efficient ZK circuits for common layers
  • Optimization Techniques: Reducing constraint count
  • Lookup Tables: Optimizing non-linear operations
  • Recursive Composition: Building complex proofs from simple ones

1.2 Proof System Optimization

  • Prover Performance: GPU/ASIC acceleration
  • Verifier Efficiency: Constant-time verification
  • Proof Size: Minimizing proof bandwidth
  • Parallelization: Multi-core proving strategies

1.3 Privacy Model Design

  • Data Privacy: Protecting input/output data
  • Model Privacy: Protecting model parameters
  • Computation Privacy: Hiding computation patterns
  • Composition Privacy: Composable privacy guarantees

Phase 2: Implementation (Months 3-4)

2.1 Core ZK Library

class ZKProver:
    def __init__(self, proving_system: ProvingSystem):
        self.proving_system = proving_system
        self.circuit_cache = CircuitCache()
        self.proving_key_cache = ProvingKeyCache()
    
    async def prove_inference(
        self,
        model: NeuralNetwork,
        input_data: Tensor,
        witness: Optional[Tensor] = None
    ) -> ZKProof:
        """Generate ZK proof for model inference"""
        
        # Build or retrieve circuit
        circuit = await self.circuit_cache.get_or_build(model)
        
        # Generate witness
        if witness is None:
            witness = await self.generate_witness(model, input_data)
        
        # Load proving key
        proving_key = await self.proving_key_cache.get(circuit.id)
        
        # Generate proof
        proof = await self.proving_system.prove(
            circuit, witness, proving_key
        )
        
        return proof
    
    async def verify_inference(
        self,
        proof: ZKProof,
        public_inputs: PublicInputs,
        circuit_id: str
    ) -> bool:
        """Verify ZK proof of inference"""
        
        # Load verification key
        verification_key = await self.load_verification_key(circuit_id)
        
        # Verify proof
        return await self.proving_system.verify(
            proof, public_inputs, verification_key
        )

class AICircuitBuilder:
    def __init__(self):
        self.layer_builders = {
            'dense': self.build_dense_layer,
            'conv2d': self.build_conv2d_layer,
            'relu': self.build_relu_layer,
            'batch_norm': self.build_batch_norm_layer,
        }
    
    async def build_circuit(self, model: NeuralNetwork) -> Circuit:
        """Build ZK circuit for neural network"""
        
        circuit = Circuit()
        
        # Build layers sequentially
        for layer in model.layers:
            layer_type = layer.type
            builder = self.layer_builders[layer_type]
            circuit = await builder(circuit, layer)
        
        # Add constraints for input/output privacy
        circuit = await self.add_privacy_constraints(circuit)
        
        return circuit
    
    async def build_dense_layer(
        self,
        circuit: Circuit,
        layer: DenseLayer
    ) -> Circuit:
        """Build ZK circuit for dense layer"""
        
        # Create variables for weights and inputs
        weights = circuit.create_private_variables(layer.weight_shape)
        inputs = circuit.create_private_variables(layer.input_shape)
        
        # Matrix multiplication constraints
        outputs = []
        for i in range(layer.output_size):
            weighted_sum = circuit.create_linear_combination(
                weights[i], inputs
            )
            output = circuit.add_constraint(
                weighted_sum + layer.bias[i],
                "dense_output"
            )
            outputs.append(output)
        
        return circuit

2.2 Privacy-Preserving Inference

class PrivateInferenceService:
    def __init__(self, zk_prover: ZKProver, model_store: ModelStore):
        self.zk_prover = zk_prover
        self.model_store = model_store
    
    async def private_inference(
        self,
        model_id: str,
        encrypted_input: EncryptedData,
        privacy_requirements: PrivacyRequirements
    ) -> InferenceResult:
        """Perform private inference with ZK proof"""
        
        # Decrypt input (only for computation)
        input_data = await self.decrypt_input(encrypted_input)
        
        # Load model (encrypted at rest)
        model = await self.model_store.load_encrypted(model_id)
        
        # Perform inference
        raw_output = await model.forward(input_data)
        
        # Generate ZK proof
        proof = await self.zk_prover.prove_inference(
            model, input_data
        )
        
        # Create result with proof
        result = InferenceResult(
            output=raw_output,
            proof=proof,
            model_id=model_id,
            timestamp=datetime.utcnow()
        )
        
        return result
    
    async def verify_inference(
        self,
        result: InferenceResult,
        public_commitments: PublicCommitments
    ) -> bool:
        """Verify inference result without learning output"""
        
        # Verify ZK proof
        proof_valid = await self.zk_prover.verify_inference(
            result.proof,
            public_commitments,
            result.model_id
        )
        
        return proof_valid

2.3 Verifiable Machine Learning

class VerifiableML:
    def __init__(self, zk_prover: ZKProver):
        self.zk_prover = zk_prover
    
    async def prove_training(
        self,
        dataset: Dataset,
        model: NeuralNetwork,
        training_params: TrainingParams
    ) -> TrainingProof:
        """Generate proof of correct training"""
        
        # Create training circuit
        circuit = await self.create_training_circuit(
            dataset, model, training_params
        )
        
        # Generate witness from training process
        witness = await self.generate_training_witness(
            dataset, model, training_params
        )
        
        # Generate proof
        proof = await self.zk_prover.prove_training(circuit, witness)
        
        return TrainingProof(
            proof=proof,
            model_hash=model.hash(),
            dataset_hash=dataset.hash(),
            metrics=training_params.metrics
        )
    
    async def prove_model_integrity(
        self,
        model: NeuralNetwork,
        expected_architecture: ModelArchitecture
    ) -> IntegrityProof:
        """Proof that model matches expected architecture"""
        
        # Create architecture verification circuit
        circuit = await self.create_architecture_circuit(
            expected_architecture
        )
        
        # Generate witness from model
        witness = await self.extract_model_witness(model)
        
        # Generate proof
        proof = await self.zk_prover.prove(circuit, witness)
        
        return IntegrityProof(
            proof=proof,
            architecture_hash=expected_architecture.hash()
        )

Phase 3: Advanced Applications (Months 5-6)

3.1 ZK Rollups for AI

class ZKAIRollup:
    def __init__(self, layer1: Layer1, zk_prover: ZKProver):
        self.layer1 = layer1
        self.zk_prover = zk_prover
        self.state = RollupState()
    
    async def submit_batch(
        self,
        operations: List[AIOperation]
    ) -> BatchProof:
        """Submit batch of AI operations to rollup"""
        
        # Create batch circuit
        circuit = await self.create_batch_circuit(operations)
        
        # Generate witness
        witness = await self.generate_batch_witness(
            operations, self.state
        )
        
        # Generate proof
        proof = await self.zk_prover.prove_batch(circuit, witness)
        
        # Submit to Layer 1
        await self.layer1.submit_ai_batch(proof, operations)
        
        return BatchProof(proof=proof, operations=operations)
    
    async def create_batch_circuit(
        self,
        operations: List[AIOperation]
    ) -> Circuit:
        """Create circuit for batch of operations"""
        
        circuit = Circuit()
        
        # Add constraints for each operation
        for op in operations:
            if op.type == "inference":
                circuit = await self.add_inference_constraints(
                    circuit, op
                )
            elif op.type == "training":
                circuit = await self.add_training_constraints(
                    circuit, op
                )
            elif op.type == "model_update":
                circuit = await self.add_update_constraints(
                    circuit, op
                )
        
        # Add batch-level constraints
        circuit = await self.add_batch_constraints(circuit, operations)
        
        return circuit

3.2 ZK Identity for AI Agents

class ZKAgentIdentity:
    def __init__(self, zk_prover: ZKProver):
        self.zk_prover = zk_prover
        self.identity_registry = IdentityRegistry()
    
    async def create_agent_identity(
        self,
        agent_capabilities: AgentCapabilities,
        reputation_data: ReputationData
    ) -> AgentIdentity:
        """Create ZK identity for AI agent"""
        
        # Create identity circuit
        circuit = await self.create_identity_circuit()
        
        # Generate commitment to capabilities
        capability_commitment = await self.commit_to_capabilities(
            agent_capabilities
        )
        
        # Generate ZK proof of capabilities
        proof = await self.zk_prover.prove_capabilities(
            circuit, agent_capabilities, capability_commitment
        )
        
        # Create identity
        identity = AgentIdentity(
            commitment=capability_commitment,
            proof=proof,
            nullifier=self.generate_nullifier(),
            created_at=datetime.utcnow()
        )
        
        # Register identity
        await self.identity_registry.register(identity)
        
        return identity
    
    async def prove_capability(
        self,
        identity: AgentIdentity,
        required_capability: str,
        proof_data: Any
    ) -> CapabilityProof:
        """Proof that agent has required capability"""
        
        # Create capability proof circuit
        circuit = await self.create_capability_circuit(required_capability)
        
        # Generate witness
        witness = await self.generate_capability_witness(
            identity, proof_data
        )
        
        # Generate proof
        proof = await self.zk_prover.prove_capability(circuit, witness)
        
        return CapabilityProof(
            identity_commitment=identity.commitment,
            capability=required_capability,
            proof=proof
        )

Phase 4: Optimization & Scaling (Months 7-8)

4.1 Proof Generation Optimization

  • GPU Acceleration: CUDA kernels for constraint solving
  • Distributed Proving: Multi-machine proof generation
  • Circuit Specialization: Hardware-specific optimizations
  • Memory Optimization: Efficient memory usage patterns

4.2 Verification Optimization

  • Recursive Verification: Batch verification of proofs
  • SNARK-friendly Hashes: Efficient hash functions
  • Aggregated Signatures: Reduce verification overhead
  • Lightweight Clients: Mobile-friendly verification

4.3 Storage Optimization

  • Proof Compression: Efficient proof encoding
  • Circuit Caching: Reuse of common circuits
  • State Commitments: Efficient state proofs
  • Archival Strategies: Long-term proof storage

Technical Specifications

Performance Targets

Metric Current Target Improvement
Proof Generation 10 minutes 1 minute 10x
Proof Size 1MB 100KB 10x
Verification Time 100ms 10ms 10x
Supported Model Size 10MB 1GB 100x
Concurrent Proofs 10 1000 100x

Supported Operations

Operation ZK Support Privacy Level Performance
Inference Full High
Training Partial Medium
Model Update Full High
Data Sharing Full High
Reputation Partial High

Circuit Library

Circuit Type Constraints Use Case Optimization
Dense Layer 10K-100K Standard NN Lookup Tables
Convolution 100K-1M CNN Winograd
Attention 1M-10M Transformers Sparse
Pooling 1K-10K CNN Custom
Activation 1K-10K All Lookup

Security Analysis

Privacy Guarantees

1. Input Privacy

  • Zero-Knowledge: Proofs reveal nothing about inputs
  • Perfect Secrecy: Information-theoretic privacy
  • Composition: Privacy preserved under composition

2. Model Privacy

  • Weight Encryption: Model parameters encrypted
  • Circuit Obfuscation: Circuit structure hidden
  • Access Control: Fine-grained permissions

3. Computation Privacy

  • Timing Protection: Constant-time operations
  • Access Pattern: ORAM for memory access
  • Side-Channel: Resistant to side-channel attacks

Security Properties

1. Soundness

  • Computational: Infeasible to forge invalid proofs
  • Statistical: Negligible soundness error
  • Universal: Works for all valid inputs

2. Completeness

  • Perfect: All valid proofs verify
  • Efficient: Fast verification
  • Robust: Tolerates noise

3. Zero-Knowledge

  • Perfect: Zero information leakage
  • Simulation: Simulator exists
  • Composition: Composable ZK

Implementation Plan

Phase 1: Foundation (Months 1-2)

  • Complete ZK circuit library design
  • Implement core prover/verifier
  • Create privacy model framework
  • Set up development environment

Phase 2: Core Features (Months 3-4)

  • Implement private inference
  • Build verifiable ML system
  • Create ZK rollup for AI
  • Develop ZK identity system

Phase 3: Advanced Features (Months 5-6)

  • Add recursive proofs
  • Implement distributed proving
  • Create ZK marketplace
  • Build developer SDK

Phase 4: Optimization (Months 7-8)

  • GPU acceleration
  • Proof compression
  • Verification optimization
  • Storage optimization

Phase 5: Integration (Months 9-12)

  • Integrate with AITBC
  • Deploy testnet
  • Developer onboarding
  • Mainnet launch

Deliverables

Technical Deliverables

  1. ZK Circuit Library (Month 2)
  2. Private Inference System (Month 4)
  3. ZK Rollup Implementation (Month 6)
  4. Optimized Prover (Month 8)
  5. Mainnet Integration (Month 12)

Research Deliverables

  1. Conference Papers: 3 papers on ZK for AI
  2. Technical Reports: Quarterly progress
  3. Open Source: All code under MIT license
  4. Standards: ZK protocol specifications

Developer Deliverables

  1. SDK: Multi-language development kit
  2. Documentation: Comprehensive guides
  3. Examples: AI/ML use cases
  4. Tools: Circuit compiler, debugger

Resource Requirements

Team

  • Principal Investigator (1): ZK cryptography expert
  • Cryptography Engineers (3): ZK system implementation
  • AI/ML Engineers (2): AI circuit design
  • Systems Engineers (2): Performance optimization
  • Security Researchers (2): Security analysis
  • Developer Advocate (1): Developer tools

Infrastructure

  • GPU Cluster: 100 GPUs for proving
  • Compute Nodes: 50 CPU nodes for verification
  • Storage: 100TB for model storage
  • Network: High-bandwidth for data transfer

Budget

  • Personnel: $7M
  • Infrastructure: $2M
  • Research: $1M
  • Community: $1M

Success Metrics

Technical Metrics

  • Achieve 1-minute proof generation
  • Support 1GB+ models
  • Handle 1000+ concurrent proofs
  • Pass 3 security audits
  • 10x improvement over baseline

Adoption Metrics

  • 100+ AI models using ZK
  • 10+ enterprise applications
  • 1000+ active developers
  • 1M+ ZK proofs generated
  • 5+ partnerships

Research Metrics

  • 3+ papers at top conferences
  • 5+ patents filed
  • 10+ academic collaborations
  • Open source with 10,000+ stars
  • Industry recognition

Risk Mitigation

Technical Risks

  1. Proof Complexity: AI circuits may be too complex
    • Mitigation: Incremental complexity, optimization
  2. Performance: May not meet performance targets
    • Mitigation: Hardware acceleration, parallelization
  3. Security: New attack vectors possible
    • Mitigation: Formal verification, audits

Adoption Risks

  1. Complexity: Hard to use for developers
    • Mitigation: Abstractions, SDK, documentation
  2. Cost: Proving may be expensive
    • Mitigation: Optimization, subsidies
  3. Interoperability: May not work with other systems
    • Mitigation: Standards, bridges

Research Risks

  1. Dead Ends: Some approaches may not work
    • Mitigation: Parallel research tracks
  2. Obsolescence: Technology may change
    • Mitigation: Flexible architecture
  3. Competition: Others may advance faster
    • Mitigation: Focus on AI specialization

Conclusion

This research plan establishes AITBC as the leader in zero-knowledge applications for AI/ML workloads. The combination of privacy-preserving inference, verifiable machine learning, and scalable ZK infrastructure creates a unique value proposition for the AI community.

The 12-month timeline with clear deliverables ensures steady progress toward production-ready implementation. The research outcomes will not only benefit AITBC but advance the entire field of privacy-preserving AI.

By focusing on practical applications and developer experience, we ensure that the research translates into real-world impact, enabling the next generation of privacy-preserving AI applications on blockchain.


This research plan will evolve based on technological advances and community feedback. Regular reviews ensure alignment with ecosystem needs.