Files
aitbc/research/consortium/scaling_research_plan.md
oib c8be9d7414 feat: add marketplace metrics, privacy features, and service registry endpoints
- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels
- Implement confidential transaction models with encryption support and access control
- Add key management system with registration, rotation, and audit logging
- Create services and registry routers for service discovery and management
- Integrate ZK proof generation for privacy-preserving receipts
- Add metrics instru
2025-12-22 10:33:23 +01:00

18 KiB

Blockchain Scaling Research Plan

Executive Summary

This research plan addresses blockchain scalability through sharding and rollup architectures, targeting throughput of 100,000+ TPS while maintaining decentralization and security. The research focuses on practical implementations suitable for AI/ML workloads, including state sharding for large model storage, ZK-rollups for privacy-preserving computations, and hybrid rollup strategies optimized for decentralized marketplaces.

Research Objectives

Primary Objectives

  1. Achieve 100,000+ TPS through horizontal scaling
  2. Support AI workloads with efficient state management
  3. Maintain security across sharded architecture
  4. Enable cross-shard communication with minimal overhead
  5. Implement dynamic sharding based on network demand

Secondary Objectives

  1. Optimize for large data (model weights, datasets)
  2. Support complex computations (AI inference, training)
  3. Ensure interoperability with existing chains
  4. Minimize validator requirements for broader participation
  5. Provide developer-friendly abstractions

Technical Architecture

Sharding Architecture

┌─────────────────────────────────────────────────────────────┐
│                    Beacon Chain                             │
│  ┌─────────────┐  ┌──────────────┐  ┌─────────────────────┐ │
│  │   Random    │  │   Cross-Shard │  │    State Management │ │
│  │  Sampling   │  │   Messaging   │  │     Coordinator     │ │
│  └─────────────┘  └──────────────┘  └─────────────────────┘ │
└─────────────────┬───────────────────────────────────────────┘
                  │
    ┌─────────────┴─────────────┐
    │      Shard Chains        │
    │  ┌─────┐ ┌─────┐ ┌─────┐ │
    │  │ S0  │ │ S1  │ │ S2  │ │
    │  │     │ │     │ │     │ │
    │  │ AI  │ │ DeFi│ │ NFT │ │
    │  └─────┘ └─────┘ └─────┘ │
    └───────────────────────────┘

Rollup Stack

┌─────────────────────────────────────────────────────────────┐
│                    Layer 1 (Base)                          │
│  ┌─────────────┐  ┌──────────────┐  ┌─────────────────────┐ │
│  │   State     │  │   Data       │  │    Execution        │ │
    │  Roots      │  │ Availability │  │    Environment      │ │
│  └─────────────┘  └──────────────┘  └─────────────────────┘ │
└─────────────────┬───────────────────────────────────────────┘
                  │
    ┌─────────────┴─────────────┐
    │      Layer 2 Rollups      │
    │  ┌─────────┐ ┌─────────┐  │
    │  │  ZK-Rollup│ │Optimistic│  │
    │  │         │ │   Rollup │  │
    │  │ Privacy │ │   Speed │  │
    │  └─────────┘ └─────────┘  │
    └───────────────────────────┘

Research Methodology

Phase 1: Architecture Design (Months 1-2)

1.1 Sharding Design

  • State Sharding: Partition state across shards
  • Transaction Sharding: Route transactions to appropriate shards
  • Cross-Shard Communication: Efficient message passing
  • Validator Assignment: Random sampling with stake weighting

1.2 Rollup Design

  • ZK-Rollup: Privacy-preserving computations
  • Optimistic Rollup: High throughput for simple operations
  • Hybrid Approach: Dynamic selection based on operation type
  • Data Availability: Ensuring data accessibility

1.3 Integration Design

  • Unified Interface: Seamless interaction between shards and rollups
  • State Synchronization: Consistent state across layers
  • Security Model: Shared security across all components
  • Developer SDK: Abstractions for easy development

Phase 2: Protocol Specification (Months 3-4)

2.1 Sharding Protocol

class ShardingProtocol:
    def __init__(self, num_shards: int, beacon_chain: BeaconChain):
        self.num_shards = num_shards
        self.beacon_chain = beacon_chain
        self.shard_managers = [ShardManager(i) for i in range(num_shards)]
    
    def route_transaction(self, tx: Transaction) -> ShardId:
        """Route transaction to appropriate shard"""
        if tx.is_cross_shard():
            return self.beacon_chain.handle_cross_shard(tx)
        else:
            shard_id = self.calculate_shard_id(tx)
            return self.shard_managers[shard_id].submit_transaction(tx)
    
    def calculate_shard_id(self, tx: Transaction) -> int:
        """Calculate target shard for transaction"""
        # Use transaction hash for deterministic routing
        return int(hash(tx.hash) % self.num_shards)
    
    async def execute_cross_shard_tx(self, tx: CrossShardTransaction):
        """Execute cross-shard transaction"""
        # Lock accounts on all involved shards
        locks = await self.acquire_cross_shard_locks(tx.involved_shards)
        
        try:
            # Execute transaction atomically
            results = []
            for shard_id in tx.involved_shards:
                result = await self.shard_managers[shard_id].execute(tx)
                results.append(result)
            
            # Commit if all executions succeed
            await self.commit_cross_shard_tx(tx, results)
        except Exception as e:
            # Rollback on failure
            await self.rollback_cross_shard_tx(tx)
            raise e
        finally:
            # Release locks
            await self.release_cross_shard_locks(locks)

2.2 Rollup Protocol

class RollupProtocol:
    def __init__(self, layer1: Layer1, rollup_type: RollupType):
        self.layer1 = layer1
        self.rollup_type = rollup_type
        self.state = RollupState()
    
    async def submit_batch(self, batch: TransactionBatch):
        """Submit batch of transactions to Layer 1"""
        if self.rollup_type == RollupType.ZK:
            # Generate ZK proof for batch
            proof = await self.generate_zk_proof(batch)
            await self.layer1.submit_zk_batch(batch, proof)
        else:
            # Submit optimistic batch
            await self.layer1.submit_optimistic_batch(batch)
    
    async def generate_zk_proof(self, batch: TransactionBatch) -> ZKProof:
        """Generate zero-knowledge proof for batch"""
        # Create computation circuit
        circuit = self.create_batch_circuit(batch)
        
        # Generate witness
        witness = self.generate_witness(batch, self.state)
        
        # Generate proof
        proving_key = await self.load_proving_key()
        proof = await zk_prove(circuit, witness, proving_key)
        
        return proof
    
    async def verify_batch(self, batch: TransactionBatch, proof: ZKProof) -> bool:
        """Verify batch validity"""
        if self.rollup_type == RollupType.ZK:
            # Verify ZK proof
            circuit = self.create_batch_circuit(batch)
            verification_key = await self.load_verification_key()
            return await zk_verify(circuit, proof, verification_key)
        else:
            # Optimistic rollup - assume valid unless challenged
            return True

2.3 AI-Specific Optimizations

class AIShardManager(ShardManager):
    def __init__(self, shard_id: int, specialization: AISpecialization):
        super().__init__(shard_id)
        self.specialization = specialization
        self.model_cache = ModelCache()
        self.compute_pool = ComputePool()
    
    async def execute_inference(self, inference_tx: InferenceTransaction):
        """Execute AI inference transaction"""
        # Load model from cache or storage
        model = await self.model_cache.get(inference_tx.model_id)
        
        # Allocate compute resources
        compute_node = await self.compute_pool.allocate(
            inference_tx.compute_requirements
        )
        
        try:
            # Execute inference
            result = await compute_node.run_inference(
                model, inference_tx.input_data
            )
            
            # Verify result with ZK proof
            proof = await self.generate_inference_proof(
                model, inference_tx.input_data, result
            )
            
            # Update state
            await self.update_inference_state(inference_tx, result, proof)
            
            return result
        finally:
            # Release compute resources
            await self.compute_pool.release(compute_node)
    
    async def store_model(self, model_tx: ModelStorageTransaction):
        """Store AI model on shard"""
        # Compress model for storage
        compressed_model = await self.compress_model(model_tx.model)
        
        # Split across multiple shards if large
        if len(compressed_model) > self.shard_capacity:
            shards = await self.split_model(compressed_model)
            for i, shard_data in enumerate(shards):
                await self.store_model_shard(model_tx.model_id, i, shard_data)
        else:
            await self.store_model_single(model_tx.model_id, compressed_model)
        
        # Update model registry
        await self.update_model_registry(model_tx)

Phase 3: Implementation (Months 5-6)

3.1 Core Components

  • Beacon Chain: Coordination and randomness
  • Shard Chains: Individual shard implementations
  • Rollup Contracts: Layer 1 integration contracts
  • Cross-Shard Messaging: Communication protocol
  • State Manager: State synchronization

3.2 AI/ML Components

  • Model Storage: Efficient large model storage
  • Inference Engine: On-chain inference execution
  • Data Pipeline: Training data handling
  • Result Verification: ZK proofs for computations

3.3 Developer Tools

  • SDK: Multi-language development kit
  • Testing Framework: Shard-aware testing
  • Deployment Tools: Automated deployment
  • Monitoring: Cross-shard observability

Phase 4: Testing & Optimization (Months 7-8)

4.1 Performance Testing

  • Throughput: Measure TPS per shard and total
  • Latency: Cross-shard transaction latency
  • Scalability: Performance with increasing shards
  • Resource Usage: Validator requirements

4.2 Security Testing

  • Attack Scenarios: Various attack vectors
  • Fault Tolerance: Shard failure handling
  • State Consistency: Cross-shard state consistency
  • Privacy: ZK proof security

4.3 AI Workload Testing

  • Model Storage: Large model storage efficiency
  • Inference Performance: On-chain inference speed
  • Data Throughput: Training data handling
  • Cost Analysis: Gas optimization

Technical Specifications

Sharding Parameters

Parameter Value Description
Number of Shards 64-1024 Dynamically adjustable
Shard Size 100-500 MB State per shard
Cross-Shard Latency <500ms Message passing
Validator per Shard 100-1000 Randomly sampled
Shard Block Time 500ms Individual shard

Rollup Parameters

Parameter ZK-Rollup Optimistic
TPS 20,000 50,000
Finality 10 minutes 1 week
Gas per TX 500-2000 100-500
Data Availability On-chain Off-chain
Privacy Full None

AI-Specific Parameters

Parameter Value Description
Max Model Size 10GB Per model
Inference Time <5s Per inference
Parallelism 1000 Concurrent inferences
Proof Generation 30s ZK proof time
Storage Cost $0.01/GB/month Model storage

Security Analysis

Sharding Security

1. Single-Shard Takeover

  • Attack: Control majority of validators in one shard
  • Defense: Random validator assignment, stake requirements
  • Detection: Beacon chain monitoring, slash conditions

2. Cross-Shard Replay

  • Attack: Replay transaction across shards
  • Defense: Nonce management, shard-specific signatures
  • Detection: Transaction deduplication

3. State Corruption

  • Attack: Corrupt state in one shard
  • Defense: State roots, fraud proofs
  • Detection: Merkle proof verification

Rollup Security

1. Invalid State Transition

  • Attack: Submit invalid batch to Layer 1
  • Defense: ZK proofs, fraud proofs
  • Detection: Challenge period, verification

2. Data Withholding

  • Attack: Withhold transaction data
  • Defense: Data availability proofs
  • Detection: Availability checks

3. Exit Scams

  • Attack: Operator steals funds
  • Defense: Withdrawal delays, guardians
  • Detection: Watchtower monitoring

Implementation Plan

Phase 1: Foundation (Months 1-2)

  • Complete architecture design
  • Specify protocols and interfaces
  • Create development environment
  • Set up test infrastructure

Phase 2: Core Development (Months 3-4)

  • Implement beacon chain
  • Develop shard chains
  • Create rollup contracts
  • Build cross-shard messaging

Phase 3: AI Integration (Months 5-6)

  • Implement model storage
  • Build inference engine
  • Create ZK proof circuits
  • Optimize gas usage

Phase 4: Testing (Months 7-8)

  • Performance benchmarking
  • Security audits
  • AI workload testing
  • Community testing

Phase 5: Deployment (Months 9-12)

  • Testnet deployment
  • Mainnet preparation
  • Developer onboarding
  • Documentation

Deliverables

Technical Deliverables

  1. Sharding Protocol Specification (Month 2)
  2. Rollup Implementation (Month 4)
  3. AI/ML Integration Layer (Month 6)
  4. Performance Benchmarks (Month 8)
  5. Mainnet Deployment (Month 12)

Research Deliverables

  1. Conference Papers: 2 papers on sharding and rollups
  2. Technical Reports: Quarterly progress reports
  3. Open Source: All code under permissive license
  4. Standards: Proposals for industry standards

Community Deliverables

  1. Developer Documentation: Comprehensive guides
  2. Tutorials: AI/ML on blockchain examples
  3. Tools: SDK and development tools
  4. Support: Community support channels

Resource Requirements

Team

  • Principal Investigator (1): Scaling and distributed systems
  • Protocol Engineers (3): Core protocol implementation
  • AI/ML Engineers (2): AI-specific optimizations
  • Cryptography Engineers (2): ZK proofs and security
  • Security Researchers (2): Security analysis and audits
  • DevOps Engineers (1): Infrastructure and deployment

Infrastructure

  • Development Cluster: 64 nodes for sharding tests
  • AI Compute: GPU cluster for model testing
  • Storage: 1PB for model storage tests
  • Network: High-bandwidth for cross-shard testing

Budget

  • Personnel: $6M
  • Infrastructure: $2M
  • Security Audits: $1M
  • Community: $1M

Success Metrics

Technical Metrics

  • Achieve 100,000+ TPS total throughput
  • Maintain <1s cross-shard latency
  • Support 10GB+ model storage
  • Handle 1,000+ concurrent inferences
  • Pass 3 security audits

Adoption Metrics

  • 100+ DApps deployed on sharded network
  • 10+ AI models running on-chain
  • 1,000+ active developers
  • 50,000+ daily active users
  • 5+ enterprise partnerships

Research Metrics

  • 2+ papers accepted at top conferences
  • 3+ patents filed
  • 10+ academic collaborations
  • Open source project with 5,000+ stars
  • Industry recognition

Risk Mitigation

Technical Risks

  1. Complexity: Sharding adds significant complexity
    • Mitigation: Incremental development, extensive testing
  2. State Bloat: Large AI models increase state size
    • Mitigation: Compression, pruning, archival nodes
  3. Cross-Shard Overhead: Communication may be expensive
    • Mitigation: Batch operations, efficient routing

Security Risks

  1. Shard Isolation: Security issues in one shard
    • Mitigation: Shared security, monitoring
  2. Centralization: Large validators may dominate
    • Mitigation: Stake limits, random assignment
  3. ZK Proof Risks: Cryptographic vulnerabilities
    • Mitigation: Multiple implementations, audits

Adoption Risks

  1. Developer Complexity: Harder to develop for sharded chain
    • Mitigation: Abstractions, SDK, documentation
  2. Migration Difficulty: Hard to move from monolithic
    • Mitigation: Migration tools, backward compatibility
  3. Competition: Other scaling solutions
    • Mitigation: AI-specific optimizations, partnerships

Conclusion

This research plan presents a comprehensive approach to blockchain scaling through sharding and rollups, specifically optimized for AI/ML workloads. The combination of horizontal scaling through sharding and computation efficiency through rollups provides a path to 100,000+ TPS while maintaining security and decentralization.

The focus on AI-specific optimizations, including efficient model storage, on-chain inference, and privacy-preserving computations, positions AITBC as the leading platform for decentralized AI applications.

The 12-month timeline with clear milestones and deliverables ensures steady progress toward production-ready implementation. The research outcomes will not only benefit AITBC but contribute to the broader blockchain ecosystem.


This research plan will evolve as we learn from implementation and community feedback. Regular reviews and updates ensure the research remains aligned with ecosystem needs.