- Add Prometheus metrics for marketplace API throughput and error rates with new dashboard panels - Implement confidential transaction models with encryption support and access control - Add key management system with registration, rotation, and audit logging - Create services and registry routers for service discovery and management - Integrate ZK proof generation for privacy-preserving receipts - Add metrics instru
23 KiB
Zero-Knowledge Applications Research Plan
Executive Summary
This research plan explores advanced zero-knowledge (ZK) applications for the AITBC platform, focusing on privacy-preserving AI computations, verifiable machine learning, and scalable ZK proof systems. The research aims to make AITBC the leading platform for privacy-preserving AI/ML workloads while advancing the state of ZK technology through novel circuit designs and optimization techniques.
Research Objectives
Primary Objectives
- Enable Private AI Inference without revealing models or data
- Implement Verifiable ML with proof of correct computation
- Scale ZK Proofs to handle large AI models efficiently
- Create ZK Dev Tools for easy application development
- Standardize ZK Protocols for interoperability
Secondary Objectives
- Reduce Proof Generation Time by 90% through optimization
- Support Recursive Proofs for complex workflows
- Enable ZK Rollups with AI-specific optimizations
- Create ZK Marketplace for privacy-preserving services
- Develop ZK Identity for anonymous AI agents
Technical Architecture
ZK Stack Architecture
┌─────────────────────────────────────────────────────────────┐
│ Application Layer │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ AI/ML │ │ DeFi │ │ Identity │ │
│ │ Services │ │ Applications │ │ Systems │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ ZK Abstraction Layer │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ Circuit │ │ Proof │ │ Verification │ │
│ │ Builder │ │ Generator │ │ Engine │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ Core ZK Infrastructure │
│ ┌─────────────┐ ┌──────────────┐ ┌─────────────────────┐ │
│ │ Groth16 │ │ PLONK │ │ Halo2 │ │
│ │ Prover │ │ Prover │ │ Prover │ │
│ └─────────────┘ └──────────────┘ └─────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
AI-Specific ZK Applications
┌─────────────────────────────────────────────────────────────┐
│ Privacy-Preserving AI │
│ │
│ Input Data ──┐ │
│ ├───► ZK Circuit ──┐ │
│ Model Weights─┘ │ │
│ ├───► ZK Proof ──► Result │
│ Computation ──────────────────┘ │
│ │
│ ✓ Private inference without revealing model │
│ ✓ Verifiable computation with proof │
│ ✓ Composable proofs for complex workflows │
└─────────────────────────────────────────────────────────────┘
Research Methodology
Phase 1: Foundation (Months 1-2)
1.1 ZK Circuit Design for AI
- Neural Network Circuits: Efficient ZK circuits for common layers
- Optimization Techniques: Reducing constraint count
- Lookup Tables: Optimizing non-linear operations
- Recursive Composition: Building complex proofs from simple ones
1.2 Proof System Optimization
- Prover Performance: GPU/ASIC acceleration
- Verifier Efficiency: Constant-time verification
- Proof Size: Minimizing proof bandwidth
- Parallelization: Multi-core proving strategies
1.3 Privacy Model Design
- Data Privacy: Protecting input/output data
- Model Privacy: Protecting model parameters
- Computation Privacy: Hiding computation patterns
- Composition Privacy: Composable privacy guarantees
Phase 2: Implementation (Months 3-4)
2.1 Core ZK Library
class ZKProver:
def __init__(self, proving_system: ProvingSystem):
self.proving_system = proving_system
self.circuit_cache = CircuitCache()
self.proving_key_cache = ProvingKeyCache()
async def prove_inference(
self,
model: NeuralNetwork,
input_data: Tensor,
witness: Optional[Tensor] = None
) -> ZKProof:
"""Generate ZK proof for model inference"""
# Build or retrieve circuit
circuit = await self.circuit_cache.get_or_build(model)
# Generate witness
if witness is None:
witness = await self.generate_witness(model, input_data)
# Load proving key
proving_key = await self.proving_key_cache.get(circuit.id)
# Generate proof
proof = await self.proving_system.prove(
circuit, witness, proving_key
)
return proof
async def verify_inference(
self,
proof: ZKProof,
public_inputs: PublicInputs,
circuit_id: str
) -> bool:
"""Verify ZK proof of inference"""
# Load verification key
verification_key = await self.load_verification_key(circuit_id)
# Verify proof
return await self.proving_system.verify(
proof, public_inputs, verification_key
)
class AICircuitBuilder:
def __init__(self):
self.layer_builders = {
'dense': self.build_dense_layer,
'conv2d': self.build_conv2d_layer,
'relu': self.build_relu_layer,
'batch_norm': self.build_batch_norm_layer,
}
async def build_circuit(self, model: NeuralNetwork) -> Circuit:
"""Build ZK circuit for neural network"""
circuit = Circuit()
# Build layers sequentially
for layer in model.layers:
layer_type = layer.type
builder = self.layer_builders[layer_type]
circuit = await builder(circuit, layer)
# Add constraints for input/output privacy
circuit = await self.add_privacy_constraints(circuit)
return circuit
async def build_dense_layer(
self,
circuit: Circuit,
layer: DenseLayer
) -> Circuit:
"""Build ZK circuit for dense layer"""
# Create variables for weights and inputs
weights = circuit.create_private_variables(layer.weight_shape)
inputs = circuit.create_private_variables(layer.input_shape)
# Matrix multiplication constraints
outputs = []
for i in range(layer.output_size):
weighted_sum = circuit.create_linear_combination(
weights[i], inputs
)
output = circuit.add_constraint(
weighted_sum + layer.bias[i],
"dense_output"
)
outputs.append(output)
return circuit
2.2 Privacy-Preserving Inference
class PrivateInferenceService:
def __init__(self, zk_prover: ZKProver, model_store: ModelStore):
self.zk_prover = zk_prover
self.model_store = model_store
async def private_inference(
self,
model_id: str,
encrypted_input: EncryptedData,
privacy_requirements: PrivacyRequirements
) -> InferenceResult:
"""Perform private inference with ZK proof"""
# Decrypt input (only for computation)
input_data = await self.decrypt_input(encrypted_input)
# Load model (encrypted at rest)
model = await self.model_store.load_encrypted(model_id)
# Perform inference
raw_output = await model.forward(input_data)
# Generate ZK proof
proof = await self.zk_prover.prove_inference(
model, input_data
)
# Create result with proof
result = InferenceResult(
output=raw_output,
proof=proof,
model_id=model_id,
timestamp=datetime.utcnow()
)
return result
async def verify_inference(
self,
result: InferenceResult,
public_commitments: PublicCommitments
) -> bool:
"""Verify inference result without learning output"""
# Verify ZK proof
proof_valid = await self.zk_prover.verify_inference(
result.proof,
public_commitments,
result.model_id
)
return proof_valid
2.3 Verifiable Machine Learning
class VerifiableML:
def __init__(self, zk_prover: ZKProver):
self.zk_prover = zk_prover
async def prove_training(
self,
dataset: Dataset,
model: NeuralNetwork,
training_params: TrainingParams
) -> TrainingProof:
"""Generate proof of correct training"""
# Create training circuit
circuit = await self.create_training_circuit(
dataset, model, training_params
)
# Generate witness from training process
witness = await self.generate_training_witness(
dataset, model, training_params
)
# Generate proof
proof = await self.zk_prover.prove_training(circuit, witness)
return TrainingProof(
proof=proof,
model_hash=model.hash(),
dataset_hash=dataset.hash(),
metrics=training_params.metrics
)
async def prove_model_integrity(
self,
model: NeuralNetwork,
expected_architecture: ModelArchitecture
) -> IntegrityProof:
"""Proof that model matches expected architecture"""
# Create architecture verification circuit
circuit = await self.create_architecture_circuit(
expected_architecture
)
# Generate witness from model
witness = await self.extract_model_witness(model)
# Generate proof
proof = await self.zk_prover.prove(circuit, witness)
return IntegrityProof(
proof=proof,
architecture_hash=expected_architecture.hash()
)
Phase 3: Advanced Applications (Months 5-6)
3.1 ZK Rollups for AI
class ZKAIRollup:
def __init__(self, layer1: Layer1, zk_prover: ZKProver):
self.layer1 = layer1
self.zk_prover = zk_prover
self.state = RollupState()
async def submit_batch(
self,
operations: List[AIOperation]
) -> BatchProof:
"""Submit batch of AI operations to rollup"""
# Create batch circuit
circuit = await self.create_batch_circuit(operations)
# Generate witness
witness = await self.generate_batch_witness(
operations, self.state
)
# Generate proof
proof = await self.zk_prover.prove_batch(circuit, witness)
# Submit to Layer 1
await self.layer1.submit_ai_batch(proof, operations)
return BatchProof(proof=proof, operations=operations)
async def create_batch_circuit(
self,
operations: List[AIOperation]
) -> Circuit:
"""Create circuit for batch of operations"""
circuit = Circuit()
# Add constraints for each operation
for op in operations:
if op.type == "inference":
circuit = await self.add_inference_constraints(
circuit, op
)
elif op.type == "training":
circuit = await self.add_training_constraints(
circuit, op
)
elif op.type == "model_update":
circuit = await self.add_update_constraints(
circuit, op
)
# Add batch-level constraints
circuit = await self.add_batch_constraints(circuit, operations)
return circuit
3.2 ZK Identity for AI Agents
class ZKAgentIdentity:
def __init__(self, zk_prover: ZKProver):
self.zk_prover = zk_prover
self.identity_registry = IdentityRegistry()
async def create_agent_identity(
self,
agent_capabilities: AgentCapabilities,
reputation_data: ReputationData
) -> AgentIdentity:
"""Create ZK identity for AI agent"""
# Create identity circuit
circuit = await self.create_identity_circuit()
# Generate commitment to capabilities
capability_commitment = await self.commit_to_capabilities(
agent_capabilities
)
# Generate ZK proof of capabilities
proof = await self.zk_prover.prove_capabilities(
circuit, agent_capabilities, capability_commitment
)
# Create identity
identity = AgentIdentity(
commitment=capability_commitment,
proof=proof,
nullifier=self.generate_nullifier(),
created_at=datetime.utcnow()
)
# Register identity
await self.identity_registry.register(identity)
return identity
async def prove_capability(
self,
identity: AgentIdentity,
required_capability: str,
proof_data: Any
) -> CapabilityProof:
"""Proof that agent has required capability"""
# Create capability proof circuit
circuit = await self.create_capability_circuit(required_capability)
# Generate witness
witness = await self.generate_capability_witness(
identity, proof_data
)
# Generate proof
proof = await self.zk_prover.prove_capability(circuit, witness)
return CapabilityProof(
identity_commitment=identity.commitment,
capability=required_capability,
proof=proof
)
Phase 4: Optimization & Scaling (Months 7-8)
4.1 Proof Generation Optimization
- GPU Acceleration: CUDA kernels for constraint solving
- Distributed Proving: Multi-machine proof generation
- Circuit Specialization: Hardware-specific optimizations
- Memory Optimization: Efficient memory usage patterns
4.2 Verification Optimization
- Recursive Verification: Batch verification of proofs
- SNARK-friendly Hashes: Efficient hash functions
- Aggregated Signatures: Reduce verification overhead
- Lightweight Clients: Mobile-friendly verification
4.3 Storage Optimization
- Proof Compression: Efficient proof encoding
- Circuit Caching: Reuse of common circuits
- State Commitments: Efficient state proofs
- Archival Strategies: Long-term proof storage
Technical Specifications
Performance Targets
| Metric | Current | Target | Improvement |
|---|---|---|---|
| Proof Generation | 10 minutes | 1 minute | 10x |
| Proof Size | 1MB | 100KB | 10x |
| Verification Time | 100ms | 10ms | 10x |
| Supported Model Size | 10MB | 1GB | 100x |
| Concurrent Proofs | 10 | 1000 | 100x |
Supported Operations
| Operation | ZK Support | Privacy Level | Performance |
|---|---|---|---|
| Inference | ✓ | Full | High |
| Training | ✓ | Partial | Medium |
| Model Update | ✓ | Full | High |
| Data Sharing | ✓ | Full | High |
| Reputation | ✓ | Partial | High |
Circuit Library
| Circuit Type | Constraints | Use Case | Optimization |
|---|---|---|---|
| Dense Layer | 10K-100K | Standard NN | Lookup Tables |
| Convolution | 100K-1M | CNN | Winograd |
| Attention | 1M-10M | Transformers | Sparse |
| Pooling | 1K-10K | CNN | Custom |
| Activation | 1K-10K | All | Lookup |
Security Analysis
Privacy Guarantees
1. Input Privacy
- Zero-Knowledge: Proofs reveal nothing about inputs
- Perfect Secrecy: Information-theoretic privacy
- Composition: Privacy preserved under composition
2. Model Privacy
- Weight Encryption: Model parameters encrypted
- Circuit Obfuscation: Circuit structure hidden
- Access Control: Fine-grained permissions
3. Computation Privacy
- Timing Protection: Constant-time operations
- Access Pattern: ORAM for memory access
- Side-Channel: Resistant to side-channel attacks
Security Properties
1. Soundness
- Computational: Infeasible to forge invalid proofs
- Statistical: Negligible soundness error
- Universal: Works for all valid inputs
2. Completeness
- Perfect: All valid proofs verify
- Efficient: Fast verification
- Robust: Tolerates noise
3. Zero-Knowledge
- Perfect: Zero information leakage
- Simulation: Simulator exists
- Composition: Composable ZK
Implementation Plan
Phase 1: Foundation (Months 1-2)
- Complete ZK circuit library design
- Implement core prover/verifier
- Create privacy model framework
- Set up development environment
Phase 2: Core Features (Months 3-4)
- Implement private inference
- Build verifiable ML system
- Create ZK rollup for AI
- Develop ZK identity system
Phase 3: Advanced Features (Months 5-6)
- Add recursive proofs
- Implement distributed proving
- Create ZK marketplace
- Build developer SDK
Phase 4: Optimization (Months 7-8)
- GPU acceleration
- Proof compression
- Verification optimization
- Storage optimization
Phase 5: Integration (Months 9-12)
- Integrate with AITBC
- Deploy testnet
- Developer onboarding
- Mainnet launch
Deliverables
Technical Deliverables
- ZK Circuit Library (Month 2)
- Private Inference System (Month 4)
- ZK Rollup Implementation (Month 6)
- Optimized Prover (Month 8)
- Mainnet Integration (Month 12)
Research Deliverables
- Conference Papers: 3 papers on ZK for AI
- Technical Reports: Quarterly progress
- Open Source: All code under MIT license
- Standards: ZK protocol specifications
Developer Deliverables
- SDK: Multi-language development kit
- Documentation: Comprehensive guides
- Examples: AI/ML use cases
- Tools: Circuit compiler, debugger
Resource Requirements
Team
- Principal Investigator (1): ZK cryptography expert
- Cryptography Engineers (3): ZK system implementation
- AI/ML Engineers (2): AI circuit design
- Systems Engineers (2): Performance optimization
- Security Researchers (2): Security analysis
- Developer Advocate (1): Developer tools
Infrastructure
- GPU Cluster: 100 GPUs for proving
- Compute Nodes: 50 CPU nodes for verification
- Storage: 100TB for model storage
- Network: High-bandwidth for data transfer
Budget
- Personnel: $7M
- Infrastructure: $2M
- Research: $1M
- Community: $1M
Success Metrics
Technical Metrics
- Achieve 1-minute proof generation
- Support 1GB+ models
- Handle 1000+ concurrent proofs
- Pass 3 security audits
- 10x improvement over baseline
Adoption Metrics
- 100+ AI models using ZK
- 10+ enterprise applications
- 1000+ active developers
- 1M+ ZK proofs generated
- 5+ partnerships
Research Metrics
- 3+ papers at top conferences
- 5+ patents filed
- 10+ academic collaborations
- Open source with 10,000+ stars
- Industry recognition
Risk Mitigation
Technical Risks
- Proof Complexity: AI circuits may be too complex
- Mitigation: Incremental complexity, optimization
- Performance: May not meet performance targets
- Mitigation: Hardware acceleration, parallelization
- Security: New attack vectors possible
- Mitigation: Formal verification, audits
Adoption Risks
- Complexity: Hard to use for developers
- Mitigation: Abstractions, SDK, documentation
- Cost: Proving may be expensive
- Mitigation: Optimization, subsidies
- Interoperability: May not work with other systems
- Mitigation: Standards, bridges
Research Risks
- Dead Ends: Some approaches may not work
- Mitigation: Parallel research tracks
- Obsolescence: Technology may change
- Mitigation: Flexible architecture
- Competition: Others may advance faster
- Mitigation: Focus on AI specialization
Conclusion
This research plan establishes AITBC as the leader in zero-knowledge applications for AI/ML workloads. The combination of privacy-preserving inference, verifiable machine learning, and scalable ZK infrastructure creates a unique value proposition for the AI community.
The 12-month timeline with clear deliverables ensures steady progress toward production-ready implementation. The research outcomes will not only benefit AITBC but advance the entire field of privacy-preserving AI.
By focusing on practical applications and developer experience, we ensure that the research translates into real-world impact, enabling the next generation of privacy-preserving AI applications on blockchain.
This research plan will evolve based on technological advances and community feedback. Regular reviews ensure alignment with ecosystem needs.